tutorialspoint.com

UNIX TUTORIAL

Simply Easy Learning by tutorialspoint.com

ABOUT THE TUTORIAL

UniTxt or i al

UNIX is a computer Operating System which is capable of handling activities from multiple users at the
same time.

Unix was origina ted around in 1969 at AT&T Bell Labs by Ken Thompson and Dennis Ritchie. This tutorial
gives a very good understanding on Unix.

Audil ence

This tutorial has been prepared for the beginners to help them understand them basic to advanced
concepts covering Unix ~ commands, UNIX shell scripting and various utilities.

Prerequisites

We assume you have little knowledge about Operating System and its functionalities. A basic
understanding on various computer concepts will also help you in understanding various exercis es given
in this tutorial.

Copyright & Discl ali

a All the content and graphics on this tutorial are the property of tutorialspoint.com. Any content from
tutorialspoint.com or this tutorial may not be redistributed or reproduced in any way, shape, o r form
without the written permission of tutorialspoint.com. Failure to do so is a violation of copyright laws.

This tutorial may contain inaccuracies or errors and tutorialspoint provides no guarantee regarding the
accuracy of the site or its contents in cluding this tutorial. If you discover that the tutorialspoint.com site
or this tutorial content contains some errors, please contact us at webmaster@tutorialspoint.com

TUTORIALS POINT
Simply Easy Learning

file:///C:/Users/ZARA/Desktop/webmaster@tutorialspoint.com

Tableof Content

(O o5 IV (0] 1 = | 2
Lo 1] o o = 2
PrereqUISITES .. oo 2
Copyright & Disclaimer NOtiCe...........ocovviiiiiiiiiiice e 2
Unix Getting Started...........cooeveeiiiieii e 11
WRAL IS UNIX 2 ettt e e e et e e e e e e e e e e aannn e es 11
UNIX AFCNITECIUNE: ..ottt ee e e eeeeees 11
SYSEM BOOTUP: ...t 12
LOGIN UNIX: e 13
JLIC 0 T8 [o T PSP 13
Change PaSSWOIT:uuuuiiiiiiiiiiiiiiieiiieiiieeieeeaeebbebe e eeeeeeeeeseeebesbneeseaeeenene 13
Listing Directories and FilesS: ... 14
WHO A8 YOU? ... 14
WHhO IS LOGQEA IN? ... 14
LOGOING OUL ... 15
10 T8 [o o T | O RUSRPPRUPPU 15
SYStEM SNULAOWN: ... 15
Unix File Management.............ccoooeiiiii i, 16
LiStiNg FIleS: . 16
Meta CharaClerS:.......cooo i 17
[1T Lo L= o L 18
Creating FIlES: ... ettt e e 18
EditiNg FIlES: ..o 19
Display Content of a File: ... 19
Counting Words in @ File:uuiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeee e 19
CopYING FlES: ...t 20
Renaming Files: ... 20
Deleting FIles: ... 20
Standard UNIX StrE@IMS:uuueiieiiiiiiiiiiiiiiiieiieiieaeeeeeeeeeeeeseeeeeereeeees.. 20
(1 QB =T o (o] 1= U 22
HOME DIFECIOIY: ..ooveiiceeie et e e e e e e e aeae 22
Absolute/Relative Pathnames:oooviiiiiiii e 22
IS (] g T BT =Tox (0] =TSSP 23
Creating DIrECIOIIES et 23
Creating Parent Dir€CIOMES:uuuuueiiiiiiiiiiiiiiiiiiiitiieeieeeebeeeeeeeeeeeeeeeeeeeanee 24
ReMOVING DIr€CIOMES:uviiiiiiii e 24
(o= oo [o [l BT =Tox (0] =2 S 24

TUTORIALS POINT
Simply Easy Learning

The directories . (dot) and .. (ot dOt)euuviiiiiriiiiiiiie e, 25
Unix File Permission Setupcccceeviiiiiiiiiiiii e, 26
The Permission INAICALOrS:uuuiiiiei e 26
File ACCESS MOUES: ... 26
L REAG: ... et aaaaaae 26
D2 (PSRRI 27
3. EXBCULE: ... 27
Directory ACCESS MOUES:.........cooiiiiiiiiiiii 27
L REAG: ... e et aaaaaae 27
P2 AT 1= TP 27
3. EXBCULE: e 27
Changing PermiSSIONS:uuuuuuuiiiiiiiiiiiiiiiiiiiieiiieiieeeeeeeeeeeeeeeeeeeeeeeaeeeanae 27
Using chmod in Symbolic Mode:ccooviiiiiiiiic e, 27
Using chmod with Absolute Permissions:.........ccccccvvvvviiiiiiiiiiiiiiiiiiiiiieee 28
Changing OWNErS anNd GrOUPS:uuuuueereeeeereeeereeenesunenssseeseesseeesenneeseeeees 28
Changing OWNEISNIP:iii e e e e e e eeaanns 29
Changing Group OWNEISNIP:uuuueiiiiiiiiiiiiiiiiiieiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeae 29
SUID and SGID File PermiSSION:cccueieeiiiieiiiiiiiee e e eeeeeiiiiine e e e e e e e eeenennnns 29
UNIX ENVIFONMENT......ooiiii e 31
The .profile Fle: ... e 32
Setting the Terminal TYPE:coooriiiiie e, 32
Setting the PATH: ..ot eeeeeeeees 32
PS1 and PS2 Variables:..........ccccooiiiii 33
Environment Variables: ... 34
Java BasiC ULIIILIESovviieiiiiic e 36
Printing FIles: ... 36
The prCommMaANd:ooiiii i e 36
The Ip and Ipr Commands:cooeeeieeiiiii e 37
The Ipstat and Ipg ComMMANAS: ... 37
The cancel and Iprm Commands:cooovviiiiiiiiie e 38
Sending Emall: 38
Unix Pipes and Filterscoviiiiiiiiieeeeee e 40
The grep CoOmMMEANG: beaeeeanae 40
The SOrt CoOmMMAaNG:ooo oo e e e 41
The pg and more CommaNdS:........ccovviiiiiiiiiiiiie e 42
Unix Processes Managementcoovevvveveiiieeeveiiiineeeeeiiineeen 43
STArING @ PrOCESS: ... uiiiiiiiiiiiiiiiiieiee et b e b baebanennnnne 43
FOreground PrOCESSES:cooiiiiiiiiiieeee e 43

TUTORIALS POINT
Simply Easy Learning

BacKground PrOCESSES:uuuuiiiieeeieeeeeiiie e e et e e 44

Listing RUNNING PrOCESSES:cooiiiiiiiiiiiiiiiieeeee 44
StOPPING PrOCESSES: ...ttt eeeeeebbaeennennnenne 45
Parent and Child ProCeSSES:.........cooiviiiiiiiiiieee e 46
Zombie and Orphan PrOCESSES:..... ..o 46
DaCMON PrOCESSES:uiiiiiieei ettt eeaan s 46
The top COMMANG:iii e e e e e 46
JOD ID Versus ProCeSS ID:oeuuuiiiiiiee ettt 46
UnNiX COMMUNICATIONciiiiiiiie e 48
The PING ULHITY: ..o 48
)11 1 P 48
EXamMPIe: .. 48
THhe TP ULIHIEY: ..o s 49
)11 1 P 49
EXaMPIe: .. 50
The telnet ULIITY:oe s 51
The fiInger ULIItY: ...ooveeee e 51
UNiX T The Vi EAItOr.......ccovviiiiiicie e 53
Starting the Vi EQItOr:oo i 53
OPErationN MOUES:uueeiiiiiiiiiiieeeeeeeeeteeeeeee e ee s eee e eeeeseesneeeees 54
Getting OUL OF Vii oot e e 54
Moving Within @ File:.........oommmi e 54
(©70] a1 i f0] I 0] 1011 1 F= T o £S5 55
EditiNg FIlES ..o e 56
Deleting CharaClers:oouvuiiiii e 56
Change COMMANGS:uuiiiiiiiiiiiiiiiiiiiii bbb bbaeebaeeeeeene 57
Copy and Past Commands:uuiiiiiieeeieeiceiie e e 57
Advanced COmMMANAS:cooiieeeeeeeee e 57
Word and Character Searching: ... 58
Y=l O] 141 1 4= T a0 LSS 59
RUNNING COMMANAS:......oiiiiiiiiii e 59
RePIaCing TeXt: .o 59
IMPOR T T AN T 60
Unix- What is Shell.........cooiiiii e 61
Shell Prompt. e 61
] 1 T= | Y 01T TP PPPPPPPPPPP 61
ShEll SCIPLS: ..o 62
EXaMPIE SCIIPL oo 62
Shell COMMENTS: ... e e e e e e e e e e e eennannes 62

TUTORIALS POINT
Simply Easy Learning

Extended Shell SCHPLS:ovvviiii e 63

Unix- Using Variables............cooiiiiiiiii e, 64
Variable NameS:.......o o 64
Defining Variables: ... 64
ACCESSING VAIUES: ... e e 65
Read-only Variables: ... 65
UNSEtting VariabIes:uuiiiiiiiiiieiei e e e e eeeees 65
Variable TYPES: oo ———————— 66
Unix-Special Variables...........cccooooiiiiiii e, 67
Command-Line ArgUMENLES:covuiiiiiiieeeeeee e e e e e e e e e e e e e eaenns 68
Special Parameters $* and $@:uuvvvevrviirieiiiiiiiieiiiiiriiieeererrrreerae. 68
EXIt StAtUS: .o, 69
UNIX T USING AITAYS oeeniieeiieeeee e e e e e e e e e e eaens 70
Defining Array ValUES:.........uvuiiii i 70
ACCESSING AITay ValUBS: ... 71
UNixX - BasSIC OPEratorS........cceeuuuieieiiiieeeeiieeeeineereaineeeeenneeennns 72
ANtNMELIC OPEIALOIS: ... 73
Relational OPEratorsS:uuuuiiiiie e 74
Boolean OpPerators:coooiiiiiiiiii e 76
EXaMPIe: .. 76
Y] (o @] o<1 =1 (0] £ USRPPRUPRTTR 77
EXaMPIe: .. 78
File TeSt OPEratorS:coooiiiiiiiiiiee e 79
EXAMPIE: .. e —————————— 80
C Shell OPEIatOrS: euieieiiiiiiieitiee ettt be e e eeeeeneeeees 81
Arithmatic and Logical Operators:cooooveeeeieieeeee e 81
File TeSt OPEratorS:coovvviiiiiii e e e 82
Korn Shell Operators: ... 83
Arithmatic and Logical Operators:coooveeeeiiiieeeee e 83
File TeSt OPEratorS:coovveiiiiiiie et e e 83
Unix T DeciSion MakKing.........cccviiiiiiiiiiiiieeeeeeee e 85
The if...else StatemMeNtS:cooveviiiie e 85
O 1Y = 1= 0 [| S 85
B 1= 3 G 85
EXaMPIe: .. 86
if...elSe..fi StAtEMENTveeeiie e 86
B 1= 3 A 86
EXaMPIe: .. 86
if...elif...else...fi StatemMENt.........ccorriiii e 87

TUTORIALS POINT
Simply Easy Learning

)15 1 PR 87

EXamMPIe: .. 87
The case...eSac StateMEeNt:...........oiii i 87
CASE...ESAC STATEMENT ... i e ene s 88
)] £ D PP PRRRPPRPRPPN 88
EXaMPIe: .. 88
UNIX T Shell LOOPS ...ccviiiiiii e 90
The WHIle [00D ..o e 90
B0}] £ D PP PRRRPPRPPPP 90
EXamMPIe: .. 90
B =38 {0 (o o I RURRPPPUPRSR 91
)] £ D PP PPRRRPPPPPPPN 91
EXaMPIe: .. 91
THe UNLTIOOP ...t 92
B0} 1] £ D APPSR PRRRPPPPPPP 92
EXaMPIe: .. 92
The SEIECE IOOPcceeeeieie e e 93
)] £ D APPSR PRRPPPRPPPP 93
EXaMPIe: .. 93
A= 1] o T I Yo o 1S 94
Nesting While LOOPS:oooiiiiiiiiiie 94
)] £ D APPSR PPPRPPPPPPPPN 94
EXAMPIE: .. e —————————— 95
Unix T LOOPp CoNtrolcoovvniiiiiiieeie e, 96
The INfINIEE LOOP: ..ieeeeiiiiie e e e e e e e e e 96
EXaMPIe: .. 96
The break StatemeENnt:uuiiiiiii e aaeaene 96
) 1= 3 A 97
EXaMPIe: .. 97
The continue StatEMENT:..........uuiiiiiiiiiiiiiiiiiiii e reeneanne 98
) 1= 3 A 98
EXaMPIe: .. 98
Unix T Shell SUbSHItUtionsccoeviiiiiiiie e, 99
What is SUDSHEULION? ...eeiri e 99
EXaMPIe: .. 99
Command SUBDSHIULION:coiiiiiiiii e 100
)] £ D GO PP PP PPPUPPPPPPPTN 100
EXaMPIe: .. 100
Variable SUDSHIULION: ... 100

TUTORIALS POINT
Simply Easy Learning

EXAMPIE: .. e ——————— 101

Unix T Quoting MechaniSmsccooeevviiiiiiiiiiieciineeeiiee e 102
The Metacharacters ..., 102
EXAMPIE: .. e ——————— 102
The SiNgIe QUOLES: ... 103
The Double QUOLES:coiviiieeeceeeeeee e 104
The Back QUOLES:uuiiiiiiie e e e e s 104
)] € D PP TPPURPPPPPPTN 104
EXAMPIE: .. e —————— 105
EXAMPIE: .. e ——————— 105
UnNiX T 10 RedIreCHIONSccvviiiieeiiiiiie e 106
OULPUL REAIMECTION: ...ttt seeeeeenees 106
INPUL REAITECHION: 107
HEre DOCUMENT:eie e e e 107
Discard the OUIPUL: ... 108
Redirection CommaNndS:.........ccoooviiiiiiiiii e 109
Unix T Shell FUNCLIONS ..o, 110
Creating FUNCHIONS:uviiie e e e e e e e e e e e eeenes 110
EXaMPIe: .. 110
Pass Parameters to @ FUNCLION:ooovviiiiiiee e 111
Returning Values from FUNCLIONS:cccoiiiiiiiiiiiiic e 111
EXaMPIe: .. 111
NESted FUNCHONS:ccoeieeeeeeiee e 112
Function Call from Prompt:..........coooiiiiiiiiee e 112
Unix - Manpage Help ..., 114
)] £ D AP PP PPPRPPPPPPPTN 114
EXaMPIe: .. 114
Man Page SECLONS:oooviiiiiieee et 114
Useful Shell Commands:oooo i 115
Unix - Regular EXPressions.........cccvvvveviiiieeeiiiieeeiieeeeiineeee 116
INVOKING SEA: ... 116
The sed General SYNtaX:.......cooeuiii i 116
Deleting All LIneS With Sed:coooiiiiiiiiie e 117
The SEd AQAIESSES: ... e e e e e 117
The sed AdAdresSs RaNQES:ccocvuuiiiiiiiiee e 117
The Substitution ComMmMAaN:cooiiiiiiiii e 118
SUDSHIULION FlagS: .. .uuieiiiiiiiiiiiiiiiiiiiiiieiiii bbb eeaeeeeeees 119
Using an Alternative String Separator:cccuuveeeeeviiiiiieeeiiie e, 119
Replacing with EmMPLty SPace:........ccuuoiiiiiiiiiiiiciii e 119

TUTORIALS POINT
Simply Easy Learning

AdAress SUDSTIULION: .. oneee e e 119

The Matching Command:uuuuiiiiiiiiiiiiii e 120
Using Regular EXPreSSION:cuvviiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeee e 120
MatChing CharaCters:uuiiiiii e 121
Character Class KeYWOrdS:ouuuuiiiiiiieieieiiiiiee e eeeenes 122
Aampersand ReferenCing: ... 122
Using Multiple sed Commands:...........cccoveeeeeiiiiiiiiiiiiee e 123
BaCK REfEIENCES:o 123
Unix T File System BasiCS.........ccoocvvviiieiiiiiiieiii e 125
DIreCtory StIUCTUIE:ooiiiiiiieee e 125
Navigating the File SYStem:........ccooiiiiiiiiiiie e 126
The df CoOmMMAaNG:oiii e e 127
The du COmMMANG:iiii e e 127
Mounting the File SYyStem:.......ccccooiiiiiiiiee e 128
Unmounting the File SYStem:cooiiiiiiiiiiie 128
User and Group QUOLAS:coeiiiiiiiiiiiiiiiiiiiieeeeeeeeee ettt 128
Unix T User Administration............cccoeveveviniiveiiiieeiin e 130
Managing USers and GrOUPS:ccoevvveririiiiiie e eeeeeeeiiie e e e e e e e 130
Create @ GIOUP ..o.uuiiiiieieie et e e e a e ea s 131
MOITY @ GIOUP: .. oo, 131
DT o (== T] o 11 o 131
Create an ACCOUNL ..ottt e e e e e e e e e eenens 132
MOdIfy AN ACCOUNT:......cooiiiiiiiiii e 132
Delete @an ACCOUNT: ..o 133
Unix T System Performancecccooovviiiiviiiiieiiincceiineeees 134
Peformance COMPONENTS:.........ooiiiiiiiie e 134
Peformance TOOIS:cooeiieee e 135
(@] o[> QI IS VA1 (=T 0 0 1 o To [| T 136
SYSIOQ FACIHITIES: ...ttt eeeeeees 136
)Y A [To [d 0] 41 1= RSP 137
The /etc/syslog.CONf file:...........uiiiiiiiiiiiiiii e 138
LOQQING ACHIONS: ... 138
The logger Command:...........cooeiiiiiiiiiiiie e e 139
LOQ ROTALION: ... 139
Important Log LOCALIONS.........coiiiiiiiiiiiieeee e 139
Unix T Signals and Trapsoooveeviiiiiiiieiiiiieceei e 140
LISt Of SIgNalS: .. oo 140
D= = 10 | | Ao 1] £ 141
SENAING SIGN@AIS: ...eieiiiiieiiiiiiieie ettt bbb e eeeeeeeeeeeees 141

TUTORIALS POINT
Simply Easy Learning

Trapping SIgNaAIS:uueeiie e 141

Cleaning Up Temporary FileS:..........uuuuiiiiiiiiiiiiiiiiieiiiiiiiieeseeeeeeeeeeeeeeeeeeees 142
IGNONNG SIGNAIS: ... 142
ST T e LU o TR N = o1 143
Unix T Useful Commandsccueeiieiiiiiiiinieeceiiin e, 144
FileS and Dir€CtOIES:ceeiiiiiiee et 144
Manipulating data: ... 145
ComPresSed FlES: ...t 146
Getting INfOrMAtION:ueiiiie e e e e eeeees 146
Network CoOmMMUNICATION:uuiieee et e e 147
MeSSages DEIWEEN USEIS:iii it 147
Programming ULIHHES: ..o 147
AV 1o @0 0 1111 7= o £SO 149
Unix T Builtin FUNCLIONS..........ooiiii e, 151

TUTORIALS POINT
Simply Easy Learning

Unix Getting Started

he UNIX operating system is capable of handling activities from multiple users at the same time.

Ve N\
. L] o d I
2 KId Aa | YAE K
The UNIX operating system is a set of programs that act as a link between the computer and the user.

The computer programs that allocate the system resources and coordinate all the details of the computer's
internals is called the operating system or kernel.

Users communicate with the kernel through a program known as the shell. The shell is a command line
interpreter; it translates commands entered by the user and converts them into a language that is understood by
the kernel.

1 Unix was originally developed in 1969 by a group of AT&T employees at Bell Labs, including Ken Thompson,
Dennis Ritchie, Douglas Mcllroy, and Joe Ossanna.

1 There are various Unix variants available in the market. Solaris Unix, AIX, HP Unix and BSD are few
examples. Linux is also a flavor of Unix which is freely available.

1 Several people can use a UNIX computer at the same time; hence UNIX is called a multiuser system.
1 Auser can also run multiple programs at the same time; hence UNIX is called multitasking.
N\ e .I. N e .I. P
VYAE ! NOKAUGSOUdz2NBY

Here is a basic block diagram of a UNIX system:

TUTORIALS POINT
Simply Easy Learning

Application
Programs

Hardware

The main concept that unites all versions of UNIX is the following four basics:

1

Kernel: The kernel is the heart of the operating system. It interacts with hardware and most of the tasks like
memory management, tash scheduling and file management.

Shell: The shell is the utility that processes your requests. When you type in a command at your terminal, the
shell interprets the command and calls the program that you want. The shell uses standard syntax for all
commands. C Shell, Bourne Shell and Korn Shell are most famous shells which are available with most of
the Unix variants.

Commands and Utilities: There are various command and utilities which you would use in your day to day
activities. cp, mv, cat and grep etc. are few examples of commands and utilities. There are over 250
standard commands plus numerous others provided through 3rd party software. All the commands come
along with various optional options.

Files and Directories: All data in UNIX is organized into files. All files are organized into directories. These
directories are organized into a tree-like structure called the filesystem.

{eadsSy . 220dLly

If you have a computer which has UNIX operating system installed on it, then you simply need to turn on its power
to make it live.

As soon as you turn on the power, system starts booting up and finally it prompts you to log into the system,
which is an activity to log into the system and use it for your day to day activities.

TUTORIALS POINT
Simply Easy Learning

[2 3AWY | YA

When you first connect to a UNIX system, you usually see a prompt such as the following:

login

¢2 £23 AYyY

1. Have your userid (user identification) and password ready. Contact your system administrator if you don't
have these yet.

2. Type your userid at the login prompt, then press ENTER. Your userid is case-sensitive, so be sure you type it
exactly as your system administrator instructed.

3. Type your password at the password prompt, then press ENTER. Your password is also case-sensitive.

4. If you provided correct userid and password then you would be allowed to enter into the system. Read the
information and messages that come up on the screen something as below.

login : amrood

amrood 's password:

Last login: Sun Jun 14 09:32:32 2009 from 62.61.164.73
$

You would be provided with a command prompt (sometime called $ prompt) where you would type your all the
commands. For example to check calendar you need to type cal command as follows:

$ cal
June 2009
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30

$
| KFy3aS tl aag2NRY

All Unix systems require passwords to help ensure that your files and data remain your own and that the system
itself is secure from hackers and crackers. Here are the steps to change your password:

1. To start, type passwd at command prompt as shown below.

2. Enter your old password the one you're currently using.

3. Type in your new password. Always keep your password complex enough so that no body can guess it. But
make sure, you remember it.

4. You would need to verify the password by typing it again.

$ passwd
Changing password for amrood
(current) Unix password

TUTORIALS POINT
Simply Easy Learning

New UNIX password *xxxxex
Retype new UNIX password :***xxxx
passwd : all authentication tokens updated successfully

$

Note: | have put stars (*) just to show you the location where you would need to enter the current and new
passwords otherwise at your system, it would not show you any character when you would type.

[AA0AY3 5ANBOGZ2ZNASA YR

All data in UNIX is organized into files. All files are organized into directories. These directories are organized into
a tree-like structure called the filesystem.

You can use Is command to list out all the files or directories available in a directory. Following is the example of
using Is command with -I option.

$lIs -1

total 19621

drwxrwxr -x 2 amrood amrood 4096 Dec 25 09:59 uml
-rw-rw-r-- 1 amrood amrood 5341 Dec 25 08:38 uml. jpg

drwxr -xr -x 2 amrood amrood 4096 Feb 15 2006 univ

drwxr -xr -x 2 root root 4096 Dec 9 2007 urlspedia
-rw-r-- r-- 1 root root 276480 Dec 9 2007 urlspedia . tar
drwxr -xr-x 8 root root 4096 Nov 25 2007 usr

-rwxr -Xr-x 1 root root 3192 Nov 25 2007 webthumb. php
-rw-rw-r-- 1 amrood amrood 20480 Nov 25 2007 webthumb. tar
-rw-rw-r-- 1 amrood amrood 5654 Aug 9 2007 yourfile . mid
-rw-rw-r-- 1 amrood amrood 166255 Aug 9 2007 yourfile . swf
$

Here enteries starting with d..... represent directories. For example uml, univ and urlspedia are directories and
rest of the enteries are files.

2 K2 | NB | 2dK
While you're logged in to the system, you might be willing to know : Who am 1?
The easiest way to find out "who you are" is to enter the whoami command:

$ whoami
amrood

$

Try it on your system. This command lists the account name associated with the current login. You can try who
am i command as well to get information about yourself.

2 K2 A& [233SR LYK
Sometime you might be interested to know who is logged in to the computer at the same time.

There are three commands are available to get you this information, based on how much you'd like to learn about
the other users: users, who, and w.

$ users
amrood bablu gadir

TUTORIALS POINT
Simply Easy Learning

CAf

$ who

amrood ttypO Oct 8 14:10 (limbo)
bablu ttyp2 Oct 4 09: 08 (calliope)
gadir ttyp4 Oct 8 12:09 (dent)

$

Try w command on your system to check the output. This would list down few more information associated with
the users logged in the system.

[233Ay3 hdziyY

When you finish your session, you need to log out of the system to ensure that nobody else accesses your files
while masquerading as you.

¢2 f23 2dz0VY

1. Just type logout command at command prompt, and the system will clean up everything and break the
connection

N w4 N 1 =~ 7
{eausSY {KdzZiR2oYyY
The most consistent way to shut down a Unix system properly via the command line is to use one of the following
commands:
Command Description

halt Brings the system down immediately.

Powers off the system using predefined scripts to synchronize and clean up the system

a5 prior to shutdown

init 6 Reboots the system by shutting it down completely and then bringing it completely back
up

poweroff Shuts down the system by powering off.

reboot Reboots the system.

shutdown Shuts down the system.

You typically need to be the superuser or root (the most privileged account on a Unix system) to shut down the
system, but on some standalone or personally owned Unix boxes, an administrative user and sometimes regular
users can do so.

TUTORIALS POINT
Simply Easy Learning

Unix File Management

Il data in UNIX is organized into files. All files are organized into directories. These directories are

organized into a tree-like structure called the filesystem.

When you work with UNIX, one way or another you spend most of your time working with files. This tutorial would
teach you how to create and remove files, copy and rename them, create links to them etc.

In UNIX there are three basic types of files:

1. Ordinary Files: An ordinary file is a file on the system that contains data, text, or program instructions. In this
tutorial, you look at working with ordinary files.

2. Directories: Directories store both special and ordinary files. For users familiar with Windows or Mac OS,
UNIX directories are equivalent to folders.

3. Special Files: Some special files provide access to hardware such as hard drives, CD-ROM drives,

modems, and Ethernet adapters. Other special files are similar to aliases or shortcuts and enable you to
access a single file using different names.

[AAUAY3d CAf Say
To list the files and directories stored in the current directory. Use the following command:
$ls

Here is the sample output of the above command:

$ls

bin hosts lib res .03
ch07 hwl pub test_results
ch07 . bak hw2 res .01 users
docs hw3 res .02 work

The command Is supports the -1 option which would help you to get more information about the listed files:

$ls -1

total 1962188

drwxrwxr -x 2 amrood amrood 4096 Dec 25 09:59 uml
-rw-rw-r-- 1 amrood amrood 5341 Dec 25 08:38 uml. jpg

TUTORIALS POINT
Simply Easy Learning

drwxr -xr -x 2 amrood amrood 4096 Feb 15 2006 univ

drwxr -xr -x 2 root root 4096 Dec 9 2007 urlspedia
-rw-r-- r-- 1 root root 276480 Dec 9 2007 urlspedia . tar
drwxr -xr -x 8 root root 4096 Nov 25 2007 usr

drwxr -xr-x 2 200 300 4096 Nov 25 2007 webthumb-1.01
-rwxr -Xr-x 1 root root 3192 Nov 25 2007 webthumb. php
-rw-rw-r-- 1 amrood amrood 20480 Nov 25 2007 webthumb. tar
-rw-rw-r-- 1 amrood amrood 5654 Aug 9 2007 yourfile . mid
-rw-rw-r-- 1 amrood amrood 166255 Aug 9 2007 vyourfi le . swf
drwxr -xr -x 11 amrood amrood 4096 May 29 2007 zlb -1.2 .3

$

Here is the information about all the listed columns:
1. First Column: represents file type and permission given on the file. Below is the description of all type of files.
2. Second Column: represents the number of memory blocks taken by the file or directory.
3. Third Column: represents owner of the file. This is the Unix user who created this file.
4. Fourth Column: represents group of the owner. Every Unix user would have an associated group.
5. Fifth Column: represents file size in bytes.
6. Sixth Column: represents date and time when this file was created or modified last time.
7. Seventh Column: represents file or directory name.

In the Is -l listing example, every file line began with a d, -, or I. These characters indicate the type of file that's
listed.

Prefix Description

= Regular file, such as an ASCII text file, binary executable, or hard link.

b Block special file. Block input/output device file such as a physical hard drive.
c Character special file. Raw input/output device file such as a physical hard drive
d Directory file that contains a listing of other files and directories.

I Symbolic link file. Links on any regular file.
p Named pipe. A mechanism for interprocess communications
S Socket used for interprocess communication.
P 7 o Vd P
aSul / KIFIN) OuSNAY

Meta characters have special meaning in Unix. For example * and ? are metacharacters. We use * to match 0O or
more characters, a question mark ? matches with single character.

For Example:

$lsch * doc

TUTORIALS POINT
Simply Easy Learning

Displays all the files whose name start with ch and ends with .doc:

ch01 - 1.doc ch010 . doc ch02 .doc chO3 - 2.doc
ch04 - 1.doc ch040 . doc ch05 .doc ch06 - 2.doc
ch01-2.doc ch02-1.doc c¢

Here * works as meta character which matches with any character. If you want to display all the files ending with
just .doc then you can use following command:

$Is *. doc

An invisible file is one whose first character is the dot or period character (.). UNIX programs (including the shell)
use most of these files to store configuration information.

Some common examples of hidden files include the files:

9 .profile: the Bourne shell (sh) initialization script
9 .kshrc: the Korn shell (ksh) initialization script

9 .cshrc: the C shell (csh) initialization script

9 .rhosts: the remote shell configuration file

To list invisible files, specify the -a option to Is:

$Is -a
. profile docs lib test results
. . rhosts hosts pub users
.emacs bin hwl res .01 work
.exrc ch07 hw2 res . 02
. kshrc ch07 . bak hw3 res .03
$

1 Single dot .: This represents current directory.
1 Double dot ..: This represents parent directory.

Note: | have put stars (*) just to show you the location where you would need to enter the current and new
passwords otherwise at your system, it would not show you any character when you would type.

/| NBIFuaAy3ad CAt Say
You can use vi editor to create ordinary files on any Unix system. You simply need to give following command:
$ v ifilename

Above command would open a file with the given filename. You would need to press key i to come into edit
mode. Once you are in edit mode you can start writing your content in the file as below:

This is unix file ... lcreated it for the first tim e...
| 'm going to save this content in this file.
Once you are done, do the following steps:

1 Press key esc to come out of edit mode.
1 Presstwo keys Shift + ZZ together to come out of the file completely.

Now you would have a file created with filemame in the current directory.

TUTORIALS POINT
Simply Easy Learning

$ vi filename
$

ORAUAY3I CAfSay

You can edit an existing file using vi editor. We would cover this in detail in a separate tutorial. But in short, you
can open existing file as follows:

$ vi filename

Once file is opened, you can come in edit mode by pressing key i and then you can edit file as you like. If you
want to move here and there inside a file then first you need to come out of edit mode by pressing key esc and
then you can use following keys to move inside a file:

1 | key to move to the right side.

1 h key to move to the left side.

1 k key to move up side in the file.

1 j key to move down side in the file.

So using above keys you can position your cursor where ever you want to edit. Once you are positioned then you
can use i key to come in edit mode. Edit the file, once you are done press esc and finally two keys Shift +
ZZ together to come out of the file completely.

SAGLE & /2yiSyd 2F F CAf

You can use cat command to see the content of a file. Following is the simple example to see the content of
above created file:

$ cat filename

This is unix file ... lcreated it for the firsttime ...
I 'm going to save this content in this file.

$

You can display line numbers by using -b option along with cat command as follows:

$ cat filename -b

1 This is unix file lcreatedit for thefirsttime ...
2 I 'm going to save this content in this file.

$

] 2dzy GAy3 22NRa Ay | CAtSY

You can use the wc command to get a count of the total number of lines, words, and characters contained in a
file. Following is the simple example to see the information about above created file:

$ wec filename
2 19 103 filename
$

Here is the detail of all the four columns:
1. First Column: represents total number of lines in the file.
2. Second Column: represents total number of words in the file.

3. Third Column: represents total number of bytes in the file. This is actual size of the file.

TUTORIALS POINT
Simply Easy Learning

4. Fourth Column: represents file name.
You can give multiple files at a time to get the information about those file. Here is simple syntax:

$ wec filenamel filename2 filename3

/] 2LBAY3 CAf Say

To make a copy of a file use the cp command. The basic syntax of the command is:
$ cp source_file destination_file
Following is the example to create a copy of existing file flename .

$ cp filename copyfile
$

Now you would find one more file copyfile in your current directory. This file would be exactly same as original
file filename .

wSY Il YAy3d CAf Say
To change the name of a file use the mv command. Its basic syntax is:

$ mv old_file new_file

Following is the example which would rename existing file filename to newfile :

$ mv filename newfile
$

The mv command would move existing file completely into new file. So in this case you would fine only newfile in
your current directory.

58t SGAay3 CAf Say
To delete an existing file use the rm command. Its basic syntax is:
$ rm filename

Caution: It may be dangerous to delete a file because it may contain useful information. So be careful while using
this command. It is recommended to use -i option along with rm command.

Following is the example which would completely remove existing file filename :

$ rm filename
$

You can remove multiple files at a tile as follows:

$ rm filenamel filename2 filename3

$
{0FYRFNR ' yAE {GNBFYAY

Under normal circumstances every Unix program has three streams (files) opened for it when it starts up:

TUTORIALS POINT
Simply Easy Learning

1. stdin : This is referred to as standard input and associated file descriptor is 0. This is also represented as
STDIN. Unix program would read default input from STDIN.

2. stdout: This is referred to as standard output and associated file descriptor is 1. This is also represented as
STDOUT. Unix program would write default output at STDOUT

3. stderr : This is referred to as standard error and associated file descriptor is 2. This is also represented as
STDERR. Unix program would write all the error message at STDERR.

TUTORIALS POINT
Simply Easy Learning

Unix Directories

directory is a file whose sole job is to store file names and related information. All files whether

ordinary, special, or directory, are contained in directories.

UNIX uses a hierarchical structure for organizing files and directories. This structure is often referred to as a
directory tree . The tree has a single root node, the slash character (/), and all other directories are contained
below it.

| 2YS 5ANBOUZNEY
The directory in which you find yourself when you first login is called your home directory.

You will be doing much of your work in your home directory and subdirectories that you'll be creating to organize
your files.

You can go in your home directory anytime using the following command:

$cd ~
$

Here ~ indicates home directory. If you want to go in any other user's home directory then use the following
command:

$cd ~username
$

To go in your last directory you can use following command:

$cd -
$

1 0&a2f dziSkwStFOGAGS t I GKy L

Directories are arranged in a hierarchy with root (/) at the top. The position of any file within the hierarchy is
described by its pathname.

Elements of a pathname are separated by a /. A pathname is absolute if it is described in relation to root, so
absolute pathnames always begin with a /.

These are some example of absolute filenames.

A\¢

(0p)

TUTORIALS POINT
Simply Easy Learning

/etc/ passwd
/ users / sjones / chem/ notes
/ dev/ rdsk / Os3

A pathname can also be relative to your current working directory. Relative pathnames never begin with /.
Relative to user amrood' home directory, some pathnames might look like this:

chem/ notes
personal /res

To determine where you are within the filesystem hierarchy at any time, enter the command pwd to print the
current working directory:

$pwd
/ user0 / home/ amrood

$

[AGGAY3 S5ANBOG2NASEY
To list the files in a directory you can use the following syntax:
$ls dirname

Following is the example to list all the files contained in /usr/local directory:

$ls /usr / local

X11 bin gimp jikes sbin
ace doc include lib share
atalk etc info man ami

/| NBIF 0Ay3 5ANBOG2NASAEY

$mkdir dirname

Here, directory is the absolute or relative pathname of the directory you want to create. For example, the
command:

$mkdir mydir
$

Creates the directory mydir in the current directory. Here is another example:

$mkdir /tmp/ test - dir
$

This command creates the directory test-dir in the /tmp directory. The mkdir command produces no output if it
successfully creates the requested directory.

If you give more than one directory on the command line, mkdir creates each of the directories. For example:

$mkdir docs pub
$

TUTORIALS POINT
Simply Easy Learning

Creates the directories docs and pub under the current directory.

/| NBIFGAy3 tFNBYldG 5ANBOG2NAS:

Sometimes when you want to create a directory, its parent directory or directories might not exist. In this case,
mkdir issues an error message as follows:

$mkdir /tmp/ amrood / test

mkdir : Faile d to make directory "/tmp/amrood/test"” ;
No such file or directory
$

In such cases, you can specify the -p option to the mkdir command. It creates all the necessary directories for
you. For example:

$mkdir - p /tmp/ amrood/ test
$

Above command creates all the required parent directories.
wSY2@3Ay3 5ANBOG2NRASEY
Directories can be deleted using the rmdir command as follows:

$rmdir dirname
$

Note: To remove a directory make sure it is empty which means there should not be any file or sub-directory
inside this directory.

You can create multiple directories at a time as follows:

$rmdir dirnamel dirname2 dirname3

$

Above command removes the directories dirnamel, dirname2, and dirname2 if they are empty. The rmdir
command produces no output if it is successful.

| KIWHASANBOUIZ2ZNARSAY

You can use the cd command to do more than change to a home directory: You can use it to change to any
directory by specifying a valid absolute or relative path. The syntax is as follows:

$cd dirname
$

Here, dirname is the name of the directory that you want to change to. For example, the command:

$cd / usr /local /bin
$

Changes to the directory /usr/local/bin. From this directory you can cd to the directory /usr/home/amrood using the
following relative path:

$cd .././ home/ amrood
$

TUTORIALS POINT
Simply Easy Learning

wSY YNBEBGSNASAY
The mv (move) command can also be used to rename a directory. The syntax is as follows:

$mv olddir newdir

$

You can rename a directory mydir to yourdir as follows:

$mv mydir yourdir

¢CKS RANBOUZNASAa @ OR2UuU0
The filename . (dot) represents the current working directory; and the filename .. (dot dot) represent the directory

one level above the current working directory, often referred to as the parent directory.

If we enter the command to show a listing of the current working directories files and use the -a option to list all
the files and the -I option provides the long listing, this is the result.

$ls -la

drwxrwxr - x 4 teacher class 2048 Jul 16 17.56

drwxr - xr - X 60 root 1536 Jul 13 14:18 ..
-------- -- 1 teacher class 4210 May 1 08: 27 . profile
- TWXT - XTI - X 1 teacher class 1948 May 12 13: 42 memo
$

TUTORIALS POINT
Simply Easy Learning

by

Unix File Permission Setup

ile ownership is an important component of UNIX that provides a secure method for storing files. Every

file in UNIX has the following attributes:

1 Owner permissions: The owner's permissions determine what actions the owner of the file can perform on
the file.

1 Group permissions: The group's permissions determine what actions a user, who is a member of the group
that a file belongs to, can perform on the file.

1 Other (world) permissions: The permissions for others indicate what action all other users can perform on
the file.

¢KS t SNY¥Aadaarzy LYRAOIFU2ZNAY

While using Is -l command it displays various information related to file permission as follows:

$Is -1 /home/ amrood
- TWXr - Xr -- 1 amrood users 1024 Nov 2 00: 10 myfile
drwxr -xr --- 1 amrood users 1024 Nov 2 00: 10 mydir

Here first column represents different access mode ie. permission associated with a file or directory.

The permissions are broken into groups of threes, and each position in the group denotes a specific permission,
in this order: read (r), write (w), execute (X):

1 The first three characters (2-4) represent the permissions for the file's owner. For example -rwxr-xr--
represents that onwer has read (r), write (w) and execute (x) permission.

1 The second group of three characters (5-7) consists of the permissions for the group to which the file
belongs. For example -rwxr-xr-- represents that group has read (r) and execute (x) permission but no write
permission.

1 The last group of three characters (8-10) represents the permissions for everyone else. For example -rwxr-xr-
- represents that other world has read (r) only permission.

CAfS 1 0O0Saa az2RSay

The permissions of a file are the first line of defense in the security of a Unix system. The basic building blocks of
Unix permissions are the read, write , and execute permissions, which are described below:

M® wSlkRY
Grants the capability to read ie. view the contents of the file.

TUTORIALS POINT
Simply Easy Learning

HOP 2 NAUSY

Grants the capability to modify, or remove the content of the file.
o 9ESOdzi SY

User with execute permissions can run a file as a program.

Loy e Vd N e o Pal v v o ’”~ ~
5ANBOUZ2ZNE ! O0OSaa azRSay
Directory access modes are listed and organized in the same manner as any other file. There are a few
differences that need to be mentioned:

mMm® wSI RY

Access to a directory means that the user can read the contents. The user can look at the filenames inside the
directory.

HO 2 NAUSY

Access means that the user can add or delete files to the contents of the directory.

o 9ESOdzi SY

Executing a directory doesn't really make a lot of sense so think of this as a traverse permission.

A user must have execute access to the bin directory in order to execute Is or cd command.

| KFy3aAy3 t SNY¥A&aarzyay

To change file or directory permissions, you use the chmod (change mode) command. There are two ways to
use chmod: symbolic mode and absolute mode.

'A4Ay3 OKY2Z2R AYy {eéYoz2zftAO

The easiest way for a beginner to modify file or directory permissions is to use the symbolic mode. With symbolic
permissions you can add, delete, or specify the permission set you want by using the operators in the following
table.

Chmod operator Description
+ Adds the designated permission(s) to a file or directory.
- Removes the designated permission(s) from a file or directory.

= Sets the designated permission(s).
Here's an example using testfile. Running Is -1 on testfile shows that the file's permissions are as follows:

$ls - | testfile
- TWXIWXI -~ 1 amrood users 1024 Nov 2 00: 10 testfile

Then each example chmod command from the preceding table is run on testfile, followed by Is -l so you can see
the permission changes:

$chmod o +wx testfile

$ls - | testfile

- TWXIWXIWX 1 amrood users 1024 Nov 2 00: 10 testfile
$chmod u - x testfile

TUTORIALS POINT
Simply Easy Learning

azl

$ls - | testfile

- W - FTWXIwX 1 amrood users 1024 Nov 2 00: 10 testfile
$chmod g =r - x testfile

$ls - | testfile

-rw-r-xrwx 1 amrood users 1024 Nov 2 00: 10 testfile

Here's how you could combine these commands on a single line:

$chmod o +wx, u- x, g=r - x testfile
$ls - testfile
-rw-r-xrwx 1 amrood users 1024 Nov 2 00: 10 testfile

aAy3d OKY2R 4AGK ! 0a2tdziS t SNXYAaa.
The second way to modify permissions with the chmod command is to use a number to specify each set of

permissions for the file.

Each permission is assigned a value, as the following table shows, and the total of each set of permissions
provides a number for that set.

Number Octal Permission Representation Ref
0 No permission ---
1 Execute permission --X
2 Write permission -w-
3 Execute and write permission: 1 (execute) + 2 (write) = 3 -WX
4 Read permission r--
5 Read and execute permission: 4 (read) + 1 (execute) =5 r-x
6 Read and write permission: 4 (read) + 2 (write) = 6 rw-
7 All permissions: 4 (read) + 2 (write) + 1 (execute) = 7 rwx

Here's an example using testfile. Running Is -1 on testfile shows that the file's permissions are as follows:

$ls - | testfile
- TWXIWXI -~ 1 amrood users 1024 Nov 2 00: 10 testfile

Then each example chmod command from the preceding table is run on testfile, followed by Is -l so you can see
the permission changes:

$chmod 755 testfile

$ls - | testfile

-rwxr -xr -x 1 amrood users 1024 Nov 2 00: 10 testfile
$chmod 743 testfile

$ls -ltest file

-rwxr --- wx 1 amrood users 1024 Nov 2 00: 10 testfile
$chmod 043 testfile

$ls - | testfile

--—- r--—- wx 1 amrood users 1024 Nov 2 00: 10 testfile

| KFy3a3Ay3 hgySNE | YR DNER dzZLJa

While creating an account on Unix, it assigns a owner ID and a group ID to each user. All the permissions
mentioned above are also assigned based on Owner and Groups.

TUTORIALS POINT
Simply Easy Learning

Two commands are available to change the owner and the group of files:

1. chown: The chown command stands for "change owner" and is used to change the owner of a file.
2. chgrp: The chgrp command stands for "change group" and is used to change the group of a file.

| KFYy3aAy3a hoySNEKA LY
The chown command changes the ownership of a file. The basic syntax is as follows:

$ chown user filelist

The value of user can be either the name of a user on the system or the user id (uid) of a user on the system.

Following example:

$ chown amrood testfile
$

Changes the owner of the given file to the user amrood .

NOTE: The super user, root, has the unrestricted capability to change the ownership of a any file but normal
users can change only the owner of files they own.

/| KFy3Ay3 DNRdzZLJ hgy SNAEKA LI

The chrgp command changes the group ownership of a file. The basic syntax is as follows:
$chgrp group filelist

The value of group can be the name of a group on the system or the group ID (GID) of a group on the system.

Following example:

$ chgrp special testfile
$

Changes the group of the given file to special group.

{!'L5 FYR {DL5 CAfS tSN¥AAA

Often when a command is executed, it will have to be executed with special privileges in order to accomplish its
task.

As an example, when you change your password with the passwd command, your new password is stored in the
file /etc/shadow.

As a regular user, you do not have read or write access to this file for security reasons, but when you change your
password, you need to have write permission to this file. This means that the passwd program has to give you
additional permissions so that you can write to the file /etc/shadow.

Additional permissions are given to programs via a mechanism known as the Set User ID (SUID) and Set Group
ID (SGID) bits.

When you execute a program that has the SUID bit enabled, you inherit the permissions of that program's owner.
Programs that do not have the SUID bit set are run with the permissions of the user who started the program.

This is true for SGID as well. Normally programs execute with your group permissions, but instead your group will
be changed just for this program to the group owner of the program.

TUTORIALS POINT
Simply Easy Learning

The SUID and SGID bits will appear as the letter "s" if the permission is available. The SUID "s" bit will be located
in the permission bits where the owners execute permission would normally reside. For example, the command

$Is -1 /usr/bin / passwd
-r-sr-xr-x 1 root bin 19031 Feb 7 13:47 /usr/bin / passwd*
$

Which shows that the SUID bit is set and that the command is owned by the root. A capital letter S in the execute
position instead of a lowercase s indicates that the execute bit is not set.

If the sticky bit is enabled on the directory, files can only be removed if you are one of the following users:

1 The owner of the sticky directory

1 The owner of the file being removed

1 The super user, root

To set the SUID and SGID bits for any directory try the following:

$ chm od ug +s dirname

$Is -1

drwsr -sr-x 2 rootroot 4096 Jun 19 06: 45 dirname
$

TUTORIALS POINT
Simply Easy Learning

Unix Environment

n important Unix concept is the environment , which is defined by environment variables. Some are set

by the system, others by you, yet others by the shell, or any program that loads another program.

A variable is a character string to which we assign a value. The value assigned could be a number, text, filename,
device, or any other type of data.

For example, first we set a variables TEST and then we access its value using echo command:

$TEST="Unix Programming"
$echo STEST
Unix Programming

Note that environment variables are set without using $ sign but while accessing them we use $sign as prefix.
These variables retain their values until we come out shell.

When you login to the system, the shell undergoes a phase called initialization to set up various environments.
This is usually a two step process that involves the shell reading the following files:

1 /etc/profile
1 profile
The process is as follows:

1. The shell checks to see whether the file /etc/profile exists.

2. Ifit exists, the shell reads it. Otherwise, this file is skipped. No error message is displayed.

3. The shell checks to see whether the file .profile exists in your home directory. Your home directory is the
directory that you start out in after you log in.

4. If it exists, the shell reads it; otherwise, the shell skips it. No error message is displayed.
As soon as both of these files have been read, the shell displays a prompt:

$

This is the prompt where you can enter commands in order to have them execute.

TUTORIALS POINT
Simply Easy Learning

Note - The shell initialization process detailed here applies to all Bourne type shells, but some additional files are
used by bash and ksh.

¢tKS ODOLINRTFTAES CAfSY

The file /etc/profile is maintained by the system administrator of your UNIX machine and contains shell
initialization information required by all users on a system.

The file .profile is under your control. You can add as much shell customization information as you want to this
file. The minimum set of information that you need to configure includes

1 The type of terminal you are using
1 Alist of directories in which to locate commands
1 Alist of variables effecting look and feel of your terminal.

You can check your .profile available in your home directory. Open it using vi editor and check all the variables
set for your environment.

[{SUGGAYT GKS ¢SNXYAYIFf ¢eLISY

Usually the type of terminal you are using is automatically configured by either the login or getty programs.
Sometimes, the autoconfiguration process guesses your terminal incorrectly.

If your terminal is set incorrectly, the output of commands might look strange, or you might not be able to interact
with the shell properly.

To make sure that this is not the case, most users set their terminal to the lowest common denominator as
follows:

$TERM-vt100
$

{SGOGAYT GKS tle¢lyY

When you type any command on command prompt, the shell has to locate the command before it can be
executed.

The PATH variable specifies the locations in which the shell should look for commands. Usually it is set as
follows:

$PATH=/bin:/ usr / bin
$

Here each of the individual entries separated by the colon character, :, are directories. If you request the shell to
execute a command and it cannot find it in any of the directories given in the PATH variable, a message similar to
the following appears:

$hello

hello : not found

$

There are variables like PS1 and PS2 which are discussed in the next section.

TUTORIALS POINT
Simply Easy Learning

t{m YR t{H I NAIFIofSay

The characters that the shell displays as your command prompt are stored in the variable PS1. You can change
this variable to be anything you want. As soon as you change it, it'll be used by the shell from that point on.

For example, if you issued the command:

Your prompt would become =>. To set the value of PS1 so that it shows the working directory, issue the
command:

=>PS1="[\u@h \w]\$"
[root@ip -72-167-112-17 /var / www tutorialspoint /unix 1%
[root@ip -72-167-112-17 /var / www tutorialspoint /unix 1%

The result of this command is that the prompt displays the user's username, the machine's name (hostname), and
the working directory.

There are quite a few escape sequences that can be used as value arguments for PS1; try to limit yourself to the
most critical so that the prompt does not overwhelm you with information.

Escape Sequence Description

\t Current time, expressed as HH:MM:SS.

\d Current date, expressed as Weekday Month Date
\n Newline.

\s Current shell environment.

\W Working directory.

\w Full path of the working directory.

\u Current user.s username.

\h Hostname of the current machine.

\ Command number of the current command. Increases with each new command
entered.
If the effective UID is O (that is, if you are logged in as root), end the prompt with the #

L character; otherwise, use the $.

You can make the change yourself every time you log in, or you can have the change made automatically in PS1
by adding it to your .profile file.

When you issue a command that is incomplete, the shell will display a secondary prompt and wait for you to
complete the command and hit Enter again.

TUTORIALS POINT
Simply Easy Learning

The default secondary prompt is > (the greater than sign), but can be changed by re-defining the PS2shell

variable:

Following is the example which uses the default secondary prompt:

$echo "thisis a
> test"”

this is a
test

$

Following is the example which re-define PS2 with a customized prompt:

$ PS2 ="secondary prompt - >"

$echo '"thisisa
secondary prompt
this is a

test

$

OYIANRYYSYU =l

- >test”

NAI 6f Say

Following is the partial list of important environment variables. These variables would be set and accessed as

mentioned above:
Variable

DISPLAY

HOME

IFS

LANG

LD_LIBRARY_PATH

PATH

PWD

RANDOM

SHLVL

TERM

TZ

Description
Contains the identifier for the display that X11 programs should use by default.

Indicates the home directory of the current user: the default argument for the cd built-in
command.

Indicates the Internal Field Separator that is used by the parser for word splitting after
expansion.

LANG expands to the default system locale; LC_ALL can be used to override this. For
example, if its value is pt_BR, then the language is set to (Brazilian) Portuguese and
the locale to Brazil.

On many Unix systems with a dynamic linker, contains a colon-separated list of
directories that the dynamic linker should search for shared objects when building a
process image after exec, before searching in any other directories.

Indicates search path for commands. It is a colon-separated list of directories in which
the shell looks for commands.

Indicates the current working directory as set by the cd command.
Generates a random integer between 0 and 32,767 each time it is referenced.

Increments by one each time an instance of bash is started. This variable is useful for
determining whether the built-in exit command ends the current session.

Refers to the display type

Refers to Time zone. It can take values like GMT, AST, etc.

TUTORIALS POINT

Simply Easy Learning

uiD Expands to the numeric user ID of the current user, initialized at shell startup.

Following is the sample example showing few environment variables:

$ echo $HOME
/ root
] $ echo $DISPLAY

$ echo $TERM

xterm

$ echo $PATH

[usr /local /bin :/bin:/ usr/bin : /home/ amrood/ bin : /usr/ local / bin

$

TUTORIALS POINT
Simply Easy Learning

Java Basic Utilities

far you must have got some idea about Unix OS and nature of its basic commands. This tutorial would

cover few very basic but important Unix utilities which you would use in your day to day life.

t NAYOAY3 CAfSAyY

Before you print a file on a UNIX system, you may want to reformat it to adjust the margins, highlight some words,
and so on. Most files can also be printed without reformatting, but the raw printout may not look quite as nice.

Many versions of UNIX include two powerful text formatters, nroff and troff . They are not covered in this tutorial
but you would quit a lot material on the net for these utilities.

¢KS LINJ/ 2YYlI YRY

The pr command does minor formatting of files on the terminal screen or for a printer. For example, if you have a
long list of names in a file, you can format it onscreen into two or more columns.

Here is the syntax of pr command:
proption (s) filename (s)

The pr changes the format of the file only on the screen or on the printed copy; it doesn't modify the original file.
Following table lists some pr options:

Option Description

-k Produces k columns of output

-d Double-spaces the output (not on all pr versions).

-h "header" Takes the next item as a report header.

-t Eliminates printing of header and top/bottom margins.

-l PAGE_LENGTH Set the page length to PAGE_LENGTH (66) lines. Default number of lines of text 56.
-0 MARGIN Offset each line with MARGIN (zero) spaces.

TUTORIALS POINT
Simply Easy Learning

-w PAGE_WIDTH Set page width to PAGE_WIDTH (72) characters for multiple text-column output only.
Before using pr, here are the contents of a sample file named food

$cat food

Sweet Tooth
Bangkok Wok
Mandalay

Afghani Cuisine
Isle of Java
Big Apple Deli
Sushi and Sashimi
Tio Pepe's Peppers

Let's use pr command to make a two-column report with the header Restaurants:

$pr -2 -h "Rest aurants” food

Nov 7 9:58 1997 Restaurants Page 1
Sweet Tooth Isle of Java
Bangkok Wok Big Apple Deli
Mandalay Sushi and Sashimi
Afghani Cuisine Tio Pepe's Peppers
$

¢KS fLIIFTYR fLINJ/2YYlIYyRAY

The command Ip or Ipr prints a file onto paper as opposed to the screen display. Once you are ready with
formatting using pr command, you can use any of these commands to print your file on printer connected with
your computer.

Your system administrator has probably set up a default printer at your site. To print a file named food on the
default printer, use the Ip or Ipr command, as in this example:

$lp food
request id is laserp -525 (1 file)
$

The Ip command shows an ID that you can use to cancel the print job or check its status.

9 If you are using Ip command, you can use -nNum option to print Num number of copies. Along with the
command Ipr, you can use -Num for the same.

I If there are multiple printers connected with the shared network, then you can choose a printer using -
dprinter option along with Ip command and for the same purpose you can use -Pprinter option along with Ipr
command. Here printer is the printer name.

¢KS fLBIFG YR tLY /2YYLlLY

The Ipstat command shows what's in the printer queue: request IDs, owners, file sizes, when the jobs were sent
for printing, and the status of the requests.

Use Ipstat -o if you want to see all output requests rather than just your own. Requests are shown in the order
they'll be printed:

$lpstat -0
laserp -573 john 128865 Nov 7 11:27 on laserp

TUTORIALS POINT
Simply Easy Learning

R

C

laserp -574 grace 82744 Nov 7 11:28
laserp -575 john 23347 Nov 7 11:35
$

The Ipq gives slightly different information than Ipstat -o:

$lpq

laserp is ready and printing

Rank Owner Job Files Total Size

active john 573 report . ps 128865 bytes
1st grace 574 ch03. ps ch04 . ps 82744 Dbytes
2nd john 575 standard input 23347 bytes
$

Here the first line displays the printer status. If the printer is disabled or out of paper, you may see different
messages on this first line.

¢KS OFyOStf YR fLINY [/ 2YYLIl Yy
The cancel terminates a printing request from the Ip command. The Iprm terminates Ipr requests. You can
specify either the ID of the request (displayed by Ip or Ipq) or the name of the printer.

$cancel laserp - 575
request ‘"laserp -575" cancelled
$

To cancel whatever request is currently printing, regardless of its ID, simply enter cancel and the printer name:

$cancel laserp
request ‘"laserp -573" cancelled
$

The lprm command will cancel the active job if it belongs to you. Otherwise, you can give job numbers as
arguments, or use a dash (-) to remove all of your jobs:

$lprm 575
dfA575diamond dequeued

cfA575diamond dequeued
$

The Iprm command tells you the actual filenames removed from the printer queue.

{SYRAY3I 9YIFAfY
You use the Unix mail command to send and receive mail. Here is the syntax to send an email:

$mail [-ssubject | [-ccc -addr] [-bbcc -addr] to -addr

Here are important options related to mail command:

Option Description
-S Specify subject on command line.
-C Send carbon copies to list of users. List should be a comma-separated list of names.

TUTORIALS POINT
Simply Easy Learning

-b Send blind carbon copies to list. List should be a comma-separated list of names.
Following is the example to send a test message to admin@yahoo.com.
$mail -s "Test Message" admin@yahoo. com

You are then expected to type in your message, followed by an "control-D" at the beginning of a line. To stop
simply type dot (.) as follows:

Hi,

This is atest

Cc:

You can send a complete file using a redirect < operator as follows:

$mail -s "Report 05/06/07" admin@yahoo. com < demo. txt

To check incoming email at your Unix system you simply type email as follows:

$mail
no email

TUTORIALS POINT
Simply Easy Learning

Unix Pipes and Filters

ou can connect two commands together so that the output from one program becomes the input of the

next program. Two or more commands connected in this way form a pipe.
To make a pipe, put a vertical bar (|) on the command line between two commands.

When a program takes its input from another program, performs some operation on that input, and writes the
result to the standard output, it is referred to as a filter.

¢KS IANBLI / 2YYIlI YRY

The grep program searches a file or files for lines that have a certain pattern. The syntax is:
$grep pattern file (s)

The name "grep" derives from the ed (a UNIX line editor) command g/re/p which means "globally search for a
regular expression and print all lines containing it."

A regular expression is either some plain text (a word, for example) and/or special characters used for pattern
matching.

The simplest use of grep is to look for a pattern consisting of a single word. It can be used in a pipe so that only
those lines of the input files containing a given string are sent to the standard output. If you don't give grep a
filename to read, it reads its standard input; that's the way all filter programs work:

$Is -1 | grep "Aug"

- TW- T'W- rw- 1 john doc 11008 Aug 6 14:10 ch02

- TW- IW- rw- 1 joh n doc 8515 Aug 6 15:30 chO7

- TW- TW- T -- 1 john doc 2488 Aug 15 10: 51 intro

- TW-Iw-r -- 1 carol doc 1605 Aug 23 07: 35 macros
$

There are various options which you can use along with grep command:
Option Description

-v Print all lines that do not match pattern.

TUTORIALS POINT
Simply Easy Learning

-n Print the matched line and its line number.

-l Print only the names of files with matching lines (letter "I')
-C Print only the count of matching lines.
-i Match either upper- or lowercase.

Next, let's use a regular expression that tells grep to find lines with "carol", followed by zero or more other
characters abbreviated in a regular expression as ".*"), then followed by "Aug".

Here we are using -i option to have case insensitive search:

$Is -1 | grep -i “carol.*aug"
STW- W T -- 1 carol doc 1605 Aug 23 07: 35 macros
$

¢KS a2NI /2YYlIYRY

The sort command arranges lines of text alphabetically or numerically. The example below sorts the lines in the
food file:

$sort food

Afghani Cuisine
Bangkok Wok

Big Apple Deli
Isle of Java
Mandalay

Sushi and Sashimi
Sweet Tooth

Tio Pepe's Peppers
$

The sort command arranges lines of text alphabetically by default. There are many options that control the
sorting:

Option Description

-n Sort numerically (example: 10 will sort after 2), ignore blanks and tabs.
-r Reverse the order of sort.

-f Sort upper- and lowercase together.

+X Ignore first x fields when sorting.

More than two commands may be linked up into a pipe. Taking a previous pipe example using grep, we can
further sort the files modified in August by order of size.

The following pipe consists of the commands Is, grep, and sort:

$Is -1 | grep "Aug" | sort +4n

- TW-IwW-r-- 1 carol doc 1605 Aug 23 07: 35 macros
-rw-rw-r-- 1 john doc 2488 Aug 15 10:51 intro
-rw-rw-rw- 1 john doc 8515 Aug 6 15:30 cho7
-rw-rw-rw- 1 john doc 11008 Aug 6 14:10 ch02
$

TUTORIALS POINT
Simply Easy Learning

This pipe sorts all files in your directory modified in August by order of size, and prints them to the terminal
screen. The sort option +4n skips four fields (fields are separated by blanks) then sorts the lines in numeric order.

¢KS LA YR Y2NB /2YYIlI yRAY

A long output would normally zip by you on the screen, but if you run text through more or pg as a filter, the
display stops after each screenful of text.

Let's assume that you have a long directory listing. To make it easier to read the sorted listing, pipe the output
through more as follows:

$Is -1 | grep "Aug" | sort +4n | more

-rw-rw-r-- 1 carol doc 1605 Aug 23 07: 35 macros
-rw-rw-r-- 1 john doc 2488 Aug 15 10:51 intro
-rw-rw-rw- 1 john doc 8515 Aug 6 15:30 ch07
-rw-rw-r-- 1 john doc 14827 Aug 9 12:40 ch03
-rw-rw-rw- 1 john doc 16867 Aug 6 15:56 ch05

-- More-- (74%)

The screen will fill up with one screenful of text consisting of lines sorted by order of file size. At the bottom of the
screen is the more prompt where you can type a command to move through the sorted text.

When you're done with this screen, you can use any of the commands listed in the discussion of the more
program.

TUTORIALS POINT
Simply Easy Learning

Unix Processes Management

hen you execute a program on your UNIX system, the system creates a special environment for that

program. This environment contains everything needed for the system to run the program as if no other program
were running on the system.

Whenever you issue a command in UNIX; it creates, or starts, a new process. When you tried out the Iscommand
to list directory contents, you started a process. A process, in simple terms, is an instance of a running program.
The operating system tracks processes through a five digit ID number known as the pid or process ID . Each
process in the system has a unique pid.

Pids eventually repeat because all the possible numbers are used up and the next pid rolls or starts over. At any
one time, no two processes with the same pid exist in the system because it is the pid that UNIX uses to track
each process.

{GFNIAY3I I t N2pOSaay
When you start a process (run a command), there are two ways you can run it:
1 Foreground Processes

1 Background Processes

C2ZNBIN2dzy R t N2OSaasSay

By default, every process that you start runs in the foreground. It gets its input from the keyboard and sends its
output to the screen.

You can see this happen with the Is command. If | want to list all the files in my current directory, | can use the
following command:

$lsch *. doc

This would display all the files whose name start with ch and ends with .doc:

ch01 - 1.doc ch010 . doc ch02 .doc ch03 - 2.doc
ch04 - 1.doc ch040 . doc ch05 . doc ch06 - 2.doc
ch01 - 2.doc ch02 - 1.doc

TUTORIALS POINT
Simply Easy Learning

The process runs in the foreground, the output is directed to my screen, and if the Is command wants any input
(which it does not), it waits for it from the keyboard.

While a program is running in foreground and taking much time, we cannot run any other commands (start any
other processes) because prompt would not be available until program finishes its processing and comes out.

. FO1T3ANRdzyR t N2OSaasay

A background process runs without being connected to your keyboard. If the background process requires any
keyboard input, it waits.

The advantage of running a process in the background is that you can run other commands; you do not have to
wait until it completes to start another!

The simplest way to start a background process is to add an ampersand (&) at the end of the command.
$lsch * doc &
This would also display all the files whose name start with ch and ends with .doc:

ch01 - 1.doc ch010 . doc ch02 .doc ch03 - 2.doc
ch04 - 1.doc ch040 . doc ch05 .doc ch06 - 2.doc
ch01-2.d oc ch02 - 1.doc

Here if the Is command wants any input (which it does not), it goes into a stop state until | move it into the
foreground and give it the data from the keyboard.

That first line contains information about the background process - the job number and process ID. You need to
know the job number to manipulate it between background and foreground.

If you press the Enter key now, you see the following:

[1] + Done Isch * doc &
$

The first line tells you that the Is command background process finishes successfully. The second is a prompt for
another command.

[Aa0Ay3 wdzyyAy3d t N2OSaasay

It is easy to see your own processes by running the ps (process status) command as follows:

$ps

PID TTY TIME CMD

18358 ttyp3 00: 00: 00 sh
18361 ttyp3 00: 01: 31 abiword
18789 ttyp3 00: 00: 00 ps

One of the most commonly used flags for ps is the -f (f for full) option, which provides more information as shown
in the following example:

$ps -f

uiD PID PPI DCSTIME TTY TIME CMD

amrood 6738 3662 0 10:23:03 pts /6 0: 00 first_one
amrood 6739 3662 0 10:22:54 pts /6 0: 00 second_one
amrood 3662 3657 0 08:10:53 pts /6 0:00 -ksh

TUTORIALS POINT
Simply Easy Learning

amrood 6892 3662 4 10:51:50 pts /6 0:00 ps -f

Here is the description of all the fileds displayed by ps -f command:

Column Description

uiD User ID that this process belongs to (the person running it).
PID Process ID.

PPID Parent process ID (the ID of the process that started it).

C CPU utilization of process.

STIME Process start time.

TTY Terminal type associated with the process

TIME CPU time taken by the process.

CMD The command that started this process.

There are other options which can be used along with ps command:

Option Description

-a Shows information about all users

-X Shows information about processes without terminals.
-u Shows additional information like -f option.

-e Display extended information.

02LILIAY 3 t N2OSaasay

Ending a process can be done in several different ways. Often, from a console-based command, sending a CTRL
+ C keystroke (the default interrupt character) will exit the command. This works when process is running in
foreground mode.

=

If a process is running in background mode then first you would need to get its Job ID using pscommand and
after that you can use kill command to kill the process as follows:

$ps -f

uiD PID PPID C STIME TTY TIME CMD

amrood 6738 3662 0 10:23:03 pts /6 0: 00 first_one
amrood 6739 3662 0 10:22:54 pts /6 0: 00 second_one
amrood 3662 3657 0 08:10:53 pts /6 0:00 -ksh
amrood 6892 3662 4 10:51:50 pts /6 0:00 ps -f

$kill 6738

Terminated

Here kill command would terminate first_one process. If a process ignores a regular kil command, you can
use kill -9 followed by the process ID as follows:

TUTORIALS POINT
Simply Easy Learning

$kill -9 6738
Terminated

t I NBYd YR / KAfR tNR2OS&aaSa)

Each unix process has two ID numbers assigned to it: Process ID (pid) and Parent process ID (ppid). Each user
process in the system has a parent process.

Most of the commands that you run have the shell as their parent. Check ps -f example where this command
listed both process ID and parent process ID.

%B2YOAS YR hNLXKIY t N2OSaas

Normally, when a child process is killed, the parent process is told via a SIGCHLD signal. Then the parent can do
some other task or restart a new child as needed. However, sometimes the parent process is killed before its child
is killed. In this case, the "parent of all processes," init process, becomes the new PPID (parent process ID).
Sometime these processes are called orphan process.

When a process is killed, a ps listing may still show the process with a Z state. This is a zombie, or defunct,
process. The process is dead and not being used. These processes are different from orphan processes.They are
the processes that has completed execution but still has an entry in the process table.

51 SY2y t N2OS&aasay
Daemons are system-related background processes that often run with the permissions of root and services

requests from other processes.

A daemon process has no controlling terminal. It cannot open /devi/tty. If you do a "ps -ef" and look at the tty field,
all daemons will have a ? for the tty.

More clearly, a daemon is just a process that runs in the background, usually waiting for something to happen
that it is capable of working with, like a printer daemon is waiting for print commands.

If you have a program which needs to do long processing then its worth to make it a daemon and run it in
background.

¢CKS 02L) / 2YYIl YRY
The top command is a very useful tool for quickly showing processes sorted by various criteria.

It is an interactive diagnostic tool that updates frequently and shows information about physical and virtual
memory, CPU usage, load averages, and your busy processes.

Here is simple syntax to run top command and to see the statistics of CPU utilization by different processes:

$top

W26 L5 +SNARdza t N2OSaa L5Y

Background and suspended processes are usually manipulated via job number (job ID). This number is different
from the process ID and is used because it is shorter.

TUTORIALS POINT
Simply Easy Learning

la L YV2

In addition, a job can consist of multiple processes running in series or at the
same time, in parallel, so using the job ID is easier than tracking the individual
processes.

TUTORIALS POINT
Simply Easy Learning

Unix Communication

hen you work in a distributed environment then you need to communicate with remote users

and you also need to access remote Unix machines.

There are several Unix utilities which are especially useful for users computing in a networked,
distributed environment. This tutorial lists few of them:

CKISAY3 ! GAftAGeY

The ping command sends an echo request to a host available on the network. Using this command you can
check if your remote host is responding well or not.

The ping command is useful for the following:
9 Tracking and isolating hardware and software problems.
9 Determining the status of the network and various foreign hosts.

9 Testing, measuring, and managing networks.

{8yl EY
Following is the simple syntax to use ping command:

$ping hostname or ip -address

Above command would start printing a response after every second. To come out of the command you can
terminate it by pressing CNTRL + C keys.

OEI YLX SY
Following is the example to check the availability of a host available on the network:

$ping google . com

PING google .com (74.125 .67.100) 56(84) bytes of data

64 bytes from 74.125 .67.100 : icmp_seq =1 ttl =54 time =39.4 ms
64 bytes from 74.125 .67.100 : icmp_seq =2 ttl =54 time =39.9 ms
64 bytes from 74.125 .67.100 : icmp_seq =3 ttl =54 time =39.3 ms

TUTORIALS POINT
Simply Easy Learning

64 bytes from 74.125 .67.100 : icmp_seq =4 ttl =54 time =39.1 ms
64 byte s from 74.125 .67.100 : icmp_seq =5 ttl =54 time =38.8 ms
- google . com ping statistics

22 packets transmitted , 22 received , 0% packet loss , time 21017ms
rtt min /avg/ max mdev = 38.867 /39.334 /39.900 /0.396 ms
$

If a host does not exist then it would behave something like this:

$ping giiiiiigle . com
ping : unknown host giiiiigle .com
$

¢CKS FaGLI ' GAfAGeY

Here ftp stands for File Transfer Protocol. This utility helps you to upload and download your file from one
computer to another computer.

The ftp utility has its own set of UNIX like commands which allow you to perform tasks such as:
f Connect and login to a remote host.

9 Navigate directories.

9 List directory contents

9 Put and get files

9 Transfer files as ascii, ebcdic or binary

{eyGl EY

Following is the simple syntax to use ping command:

$ftp hostname or ip - address

Above command would prompt you for login ID and password. Once you are authenticated, you would have
access on the home directory of the login account and you would be able to perform various commands.

Few of the useful commands are listed below:

Command Description

put filename Upload filename from local machine to remote machine.

get filename Download filename from remote machine to local machine.

mput file list Upload more than one files from local machine to remove machine.
mget file list Download more than one files from remote machine to local machine.

Turns prompt off, by default you would be prompted to upload or download movies using

prompt off mput or mget commands.

TUTORIALS POINT
Simply Easy Learning

prompt on Turns prompt on.

Dir List all the files available in the current directory of remote machine.
cd dirname Change directory to dirname on remote machine.

Icd dirname Change directory to dirname on local machine.

Quit Logout from the current login.

It should be noted that all the files would be downloaded or uploaded to or from current directories. If you want to
upload your files in a particular directory then first you change to that directory and then upload required files.

OQEI YLIX SY
Following is the example to show few commands:

$ftp amrood . com

Connected to amrood . com.

220 amrood . com FTP server (Ver 49 Thu Sep 2 20:35:07 CDT 2009)
Name (amrood . com: amrood): amrood

331 Password required for amrood .

Password :

230 User amrood logged in .

ftp > dir

200 PORT command successful

150 Opening data connection for /bin/ls .

total 1464

drwxr -sr -x 3 amrood group 1024 Mar 11 20: 04 Mail
drwxr - sr - x 2 amrood group 1536 Mar 3 18:07 Misc
drwxr -sr -x 5 amrood group 512 Dec 7 10:59 OldStuff
drwxr - sr - x 2 amrood group 1024 Mar 11 15:24 bin

drwxr - sr - x 5 amrood group 3072 Mar 13 16: 10 mpl
SIW-T - T -- 1 amrood group 209671 Mar 15 10: 57 myfile . out
drwxr - sr - x 3 amrood group 512 Jan 5 13:32 public
drwxr -sr -x 3 amrood group 512 Feb 10 10: 17 pvm3
226 Transfer complete .

ftp > cd mpl

250 CWD command successful

ftp > dir

200 PORT command successful

150 Opening data connection for /bin /ls .

total 7320

SIW-T - T -- 1 amrood group 1630 Aug 8 1994 dboard . f
- IW- [- 1 amrood group 4340 Jul 17 1994 vitest .c
- PWXT - XTI - X 1 amrood group 525574 Feb 15 11:52 wave_shift
STW-T-- f-- 1 amrood group 1648 Aug 5 1994 wide . list
- PWXT - XTI - X 1 amrood group 4019 Feb 14 16:26 fix .c

226 Transfer complete .

ftp > get wave_shift

200 PORT command successful

150 Opening data connection for wave_shift (525574 bytes).
226 Transfer complete .

528454 bytes received in 1.296 seconds (398.1 Kbytes /s)
ftp > quit

221 Goodbye.

TUTORIALS POINT
Simply Easy Learning

$

~ S A ~ I % SR
¢CKS uStySu | uUAtAluey
Many times you would be in need to connect to a remote Unix machine and work on that machine remotely.

Telnet is a utility that allows a computer user at one site to make a connection, login and then conduct work on a
computer at another site.

Once you are login using telnet, you can perform all the activities on your remotely connect machine. Here is
example telnet session:

C:> telnet amrood ..com
Trying

Connected to amrood . com.
Escape character is "

login : amrood
amrood 's Password:

K*kkkkkkkkkk
*

*

WELCOME TO AMROOD.COM *
*

* % * X *

Last unsuccessful login: Fri Mar 3 12:01:09 IST 2009
Last login: Wed Mar 8 18:33:27 IST 2009 on pts/10

{ do your work }

$ logout
Connection closed.
C>

~ Ve Pal Vd
L] \\ I L]
¢ KS TAYUFRSWNI | UATL
The finger command displays information about users on a given host. The host can be either local or remote.
Finger may be disabled on other systems for security reasons.

Following are the simple syntax to use finger command:

Check all the logged in users on local machine as follows:

$ finger
Login Name Tty Idle Login Time Office
amrood pts /0 Jun 25 08:03 (62.61 .164.115)

Get information about a specific user available on local machine:

$ finger amrood

Login : amrood Name (null)
Directory : /home/ amrood Shell : /bin/ bash
On since Thu Jun 25 08:03 (MST onpts /0 from 62.61 .164.115
No mail .

TUTORIALS POINT
Simply Easy Learning

No Plan .

Check all the logged in users on remote machine as follows:

$ finger @avtar . com

Login Name Tty Idle Login Time Office

amrood pts /0 Jun 25 08:03 (62.61 .164.115)

Get information about a specific user available on remote machine:

$ finger amrood@avtar .com
Login : amrood Name (null)
Directory : /home/ amrood Shell : /bin/ bash

On since Thu Jun 25 08: 03 (MST onpts /0 from 62.61 .164.115
No mail .
No Plan .

TUTORIALS POINT
Simply Easy Learning

Unix o The vi Editor

here are many ways to edit files in Unix and for me one of the best ways is using screen-oriented text

editor vi. This editor enable you to edit lines in context with other lines in the file.
Now a days you would find an improved version of vi editor which is called VIM. Here VIM stands for VilMproved.

The vi is generally considered the de facto standard in Unix editors because:
1 It's usually available on all the flavors of Unix system.

1 Its implementations are very similar across the board.

1 Itrequires very few resources.

1 Itis more user friendly than any other editors like ed or ex.

You can use vi editor to edit an existing file or to create a new file from scratch. You can also use this editor to
just read a text file.

{GFNIAY3 GKS GA 9RAG2NY

There are following way you can start using vi editor:

Command Description

vi filename Creates a new file if it already does not exist, otherwise opens existing file.
vi -R filename Opens an existing file in read only mode.

view filename Opens an existing file in read only mode.

Following is the example to create a new file testfile if it already does not exist in the current working directory:
$vi testfile

As a result you would see a screen something like as follows:

TUTORIALS POINT
Simply Easy Learning

"testfile" [New File]

You will notice a tilde (~) on each line following the cursor. A tilde represents an unused line. If a line does not
begin with a tilde and appears to be blank, there is a space, tab, newline, or some other nonviewable character
present.

So now you have opened one file to start with. Before proceeding further let us understanding few minor but
important concepts explained below.

hLISN) GA2Yy az2RS&ayY
While working with vi editor you would come across following two modes:

1. Command mode: This mode enables you to perform administrative tasks such as saving files, executing
commands, moving the cursor, cutting (yanking) and pasting lines or words, and finding and replacing. In this
mode, whatever you type is interpreted as a command.

2. Insert mode: This mode enables you to insert text into the file. Everything that's typed in this mode is
interpreted as input and finally it is put in the file .

The vi always starts in command mode. To enter text, you must be in insert mode. To come in insert mode you

simply type i. To get out of insert mode, press the Esc key, which will put you back into command mode.

Hint: If you are not sure which mode you are in, press the Esc key twice, and then you'll be in command mode.

You open a file using vi editor and start type some characters and then come in command mode to understand

the difference.

DSUGAY3I hdzi 2F OAY

The command to quit out of vi is :q. Once in command mode, type colon, and 'q’, followed by return. If your file
has been modified in any way, the editor will warn you of this, and not let you quit. To ignore this message, the
command to quit out of vi without saving is :q!. This lets you exit vi without saving any of the changes.

The command to save the contents of the editor is :w. You can combine the above command with the quit
command, or :wq and return.

The easiest way to save your changes and exit out of vi is the ZZ command. When you are in command mode,
type ZZ and it will do the equivalent of :wq.

You can specify a different file name to save to by specifying the name after the :w. For example, if you wanted to
save the file you were working as another filename called filename2, you would type :w filename2 and return. Try
it once.

az@Ay3d GAGKAY | CAfSY

To move around within a file without affecting your text, you must be in command mode (press Esc twice). Here
are some of the commands you can use to move around one character at a time:

Command Description

K Moves the cursor up one line.

J Moves the cursor down one line.

H Moves the cursor to the left one character position.
L Moves the cursor to the right one character position.

TUTORIALS POINT
Simply Easy Learning

There are following two important points to be noted:
 The viis case-sensitive, so you need to pay special attention to capitalization when using commands.

 Most commands in vi can be prefaced by the number of times you want the action to occur. For example, 2j
moves cursor two lines down the cursor location.

There are many other ways to move within a file in vi. Remember that you must be in command mode (press Esc
twice). Here are some more commands you can use to move around the file:

Command Description

Oor| Positions cursor at beginning of line.
$ Positions cursor at end of line.

w Positions cursor to the next word.

b Positions cursor to previous word.

(Positions cursor to beginning of current sentence.
) Positions cursor to beginning of next sentence.
E Move to the end of Blank delimited word

{ Move a paragraph back

} Move a paragraph forward

([Move a section back

1 Move a section forward

n| Moves to the column n in the current line

1G Move to the first line of the file

G Move to the last line of the file

nG Move to nth line of the file

n Move to nth line of the file

fc Move forward to ¢

Fc Move back to ¢

H Move to top of screen

nH Moves to nth line from the top of the screen

M Move to middle of screen

L Move to botton of screen

nL Moves to nth line from the bottom of the screen

Colon followed by a number would position the cursor on line number
represented by x

| 2y N2t [/ 2YYlIYyRAY

There are following useful command which you can use along with Control Key:

X

TUTORIALS POINT
Simply Easy Learning

Command Description

CTRL+d Move forward 1/2 screen
CTRL+d Move forward 1/2 screen
CTRL+f Move forward one full screen
CTRL+u Move backward 1/2 screen
CTRL+b Move backward one full screen
CTRL+e Moves screen up one line
CTRL+y Moves screen down one line
CTRL+u Moves screen up 1/2 page
CTRL+d Moves screen down 1/2 page
CTRL+b Moves screen up one page
CTRL+f Moves screen down one page
CTRL+I Redraws screen

ORAGAY3 CAf Say

To edit the file, you need to be in the insert mode. There are many ways to enter insert mode from the command
mode:

Command Description
i Inserts text before current cursor location.
| Inserts text at beginning of current line.

Inserts text after current cursor location.

A Inserts text at end of current line.
o] Creates a new line for text entry below cursor location.
O Creates a new line for text entry above cursor location.

5St SUAY3I / KFENYOUSNAY

Here is the list of important commands which can be used to delete characters and lines in an opened file:

Command Descri ption

X Deletes the character under the cursor location.

X Deletes the character before the cursor location.

dw Deletes from the current cursor location to the next word.

an Deletes from current cursor position to the beginning of the line.
ds Deletes from current cursor position to the end of the line.

D Deletes from the cursor position to the end of the current line.

TUTORIALS POINT
Simply Easy Learning

dd Deletes the line the cursor is on.

As mentioned above, most commands in vi can be prefaced by the number of times you want the action to occur.
For example, 2x deletes two character under the cursor location and 2dd deletes two lines the cursor is on.

I would highly recommend to exercise all the above commands properly before proceeding further.
| KIy3asS / 2YYlIyYyRAY

You also have the capability to change characters, words, or lines in vi without deleting them. Here are the
relevant commands:

Command Description
cc Removes contents of the line, leaving you in insert mode.

ow Changes the word the cursor is on from the cursor to the lowercase w end of the

word.

r Replaces the character under the cursor. vi returns to command mode after the
replacement is entered.

R Overwrites multiple characters beginning with the character currently under the
cursor. You must use Esc to stop the overwriting.

s Replaces the current character with the character you type. Afterward, you are left
in insert mode.

S Deletes the line the cursor is on and replaces with new text. After the new text is

entered, vi remains in insert mode.
/| 2L YR tlad /2YYlIyRaY

You can copy lines or words from one place and then you can past them at another place using following
commands:

Command Description

Yy Copies the current line.

Yw Copies the current word from the character the lowercase w cursor is on until the
end of the word.

P Puts the copied text after the cursor.

P Puts the yanked text before the cursor.

l RO yOSR / 2YYlI yRAY

There are some advanced commands that simplify day-to-day editing and allow for more efficient use of vi:

Command Description

J Join the current line with the next one. A count joins that many lines.
<< Shifts the current line to the left by one shift width.

>> Shifts the current line to the right by one shift width.

= Switch the case of the character under the cursor.

TUTORIALS POINT
Simply Easy Learning

cC C

(&N

f

f filename
‘w filename
:e filename
:cd dirname
e#

n

‘P

‘N

rfile

:nr file

2 2 NR

Press CNTRL and G keys at the same time to show the current filename and
the status.

Restore the current line to the state it was in before the cursor entered the line.
Undo the last change to the file. Typing 'u’ again will re-do the change.

Join the current line with the next one. A count joins that many lines.

Displays current position in the file in % and file name, total number of file.
Renames current file to filename.

Write to file filename.

Opens another file with filename.

Changes current working directory to dirname.

Use to toggle between two opened files.

In case you open multiple files using vi, use :n to go to next file in the series.

In case you open multiple files using vi, use :p to go to previous file in the series.

In case you open multiple files using vi, use :N to go to previous file in the
series.

Reads file and inserts it after current line

Reads file and inserts it after line n.

YR [/ ®RKNY DESNI { SI NJ

The vi editor has two kinds of searches: string and character. For a string search, the / and ? commands are
used. When you start these commands, the command just typed will be shown on the bottom line, where you type
the particular string to look for.

These two commands differ only in the direction where the search takes place:

I The/command searches forwards (downwards) in the file.

The ? command searches backwards (upwards) in the file.

The n and N commands repeat the previous search command in the same or opposite direction, respectively.
Some characters have special meanings while using in search command and preceded by a backslash (\) to be
included as part of the search expression.

Character

Description

Search at the beginning of the line. (Use at the beginning of a search
expression.)

Matches a single character.

Matches zero or more of the previous character.

End of the line (Use at the end of the search expression.)
Starts a set of matching, or non-matching expressions.

Put in an expression escaped with the backslash to find the ending or beginning

TUTORIALS POINT
Simply Easy Learning

of a word.

> See the '<' character description above.

The character search searches within one line to find a character entered after the command. The f and F
commands search for a character on the current line only. f searches forwards and F searches backwards and
the cursor moves to the position of the found character.

The t and T commands search for a character on the current line only, but for t, the cursor moves to the position
before the character, and T searches the line backwards to the position after the character.

{SUO /2YYl yRaY

You can change the look and feel of your vi screen using the following :set commands. To use these commands
you have to come in command mode then type :set followed by any of the following options:

Command Description

setic Ignores case when searching

:set ai Sets autoindent

'set noai To unset autoindent.

set nu Displays lines with line numbers on the left side.

set sw Sets the width of a software tabstop. For example you would set a shift width of 4

with this command: :set sw=4

If wrapscan is set, if the word is not found at the bottom of the file, it will try to search

Setws for it at the beginning.
If this option has a value greater than zero, the editor will automatically "word wrap".
'setwm For example, to set the wrap margin to two characters, you would type this: :set
wm=2
set ro Changes file type to "read only"
set term Prints terminal type
:set bf Discards control characters from input

wdzy YAy 3 [/ 2YYlF YRAY

The vi has the capability to run commands from within the editor. To run a command, you only need to go into
command mode and type :! command.

For example, if you want to check whether a file exists before you try to save your file to that filename, you can
type :!Is and you will see the output of Is on the screen.

When you press any key (or the command's escape sequence), you are returned to your vi session.
~A ~ ~ \\ .,.
wSLI I OAYy3d ¢SEUGY

The substitution command (:s/) enables you to quickly replace words or groups of words within your files. Here is
the simple syntax:

: s/ search /replace /g

The g stands for globally. The result of this command is that all occurrences on the cursor's line are changed.

TUTORIALS POINT
Simply Easy Learning

Lat hwe¢! bey

Here are the key points to your success with vi:

 You must be in command mode to use commands. (Press Esc twice at any time to ensure that you are in
command mode.)

You must be careful to use the proper case (capitalization) for all commands.

f You must be in insert mode to enter text.

TUTORIALS POINT
Simply Easy Learning

Unix - What is Shell

he shell provides you with an interface to the UNIX system. It gathers input from you and executes

programs based on that input. When a program finishes executing, it displays that program's output.

A shell is an environment in which we can run our commands, programs, and shell scripts. There are different
flavors of shells, just as there are different flavors of operating systems. Each flavor of shell has its own set of
recognized commands and functions.

[KSff tNRYLINY

The prompt, $, which is called command prompt, is issued by the shell. While the prompt is displayed, you can
type a command.

The shell reads your input after you press Enter. It determines the command you want executed by looking at the
first word of your input. A word is an unbroken set of characters. Spaces and tabs separate words.

Following is a simple example of date command which displays current date and time:

$date
Thu Jun 25 08:30: 19 MST 2009

You can customize your command prompt using environment variable PS1 explained in Environment tutorial.
{KStf ¢eLSay

In UNIX there are two major types of shells:

1. The Bourne shell. If you are using a Bourne-type shell, the default prompt is the $ character.

2. The C shell. If you are using a C-type shell, the default prompt is the % character.

There are again various subcategories for Bourne Shell which are listed as follows:

9 Bourne shell (sh)

I Korn shell (ksh)

I Bourne Again shell (bash)

TUTORIALS POINT
Simply Easy Learning

POSIX shell (sh)

The different C-type shells follow:
Cshell (csh)

 TENEX/TOPS C shell (tcsh)

The original UNIX shell was written in the mid-1970s by Stephen R. Bourne while he was at AT&T Bell Labs in
New Jersey.

The Bourne shell was the first shell to appear on UNIX systems, thus it is referred to as "the shell".

The Bourne shell is usually installed as /bin/sh on most versions of UNIX. For this reason, it is the shell of choice
for writing scripts to use on several different versions of UNIX.

In this tutorial, we are going to cover most of the Shell concepts based on Borne Shell.
{ KSttf {ONALIN ay

The basic concept of a shell script is a list of commands, which are listed in the order of execution. A good shell
script will have comments, preceded by a pound sign, #, describing the steps.

There are conditional tests, such as value A is greater than value B, loops allowing us to go through massive
amounts of data, files to read and store data, and variables to read and store data, and the script may include
functions.

Shell scripts and functions are both interpreted. This means they are not compiled.

We are going to write a many scripts in the next several tutorials. This would be a simple text file in which we
would put our all the commands and several other required constructs that tell the shell environment what to do
and when to do it.

9EI YLX S { ONARLIGY

Assume we create a test.sh script. Note all the scripts would have .sh extension. Before you add anything else to
your script, you need to alert the system that a shell script is being started. This is done using the shebang
construct. For example:

#!/bin/sh

This tells the system that the commands that follow are to be executed by the Bourne shell. It's called a shebang
because the # symbol is called a hash, and the ! symbol is called a bang.

To create a script containing these commands, you put the shebang line first and then add the commands:

#!/bin/bash
pwd
Is
v

{KSff /2YYSy(ay

You can put your comments in your script as follows:

#!/bin/bash

TUTORIALS POINT
Simply Easy Learning

Author : Zara Al

Copyright (c) Tutorialspoint.com
Script follow s here:

pwd

Is

Now you save the above content and make this script executable as follows:

$chmod +xtest . sh

Now you have your shell script ready to be executed as follows:
$./ test .sh

This would produce following result:

/home/ amrood
index . htm unix - basic_u tilities . htm unix - directories . htm
test .sh unix - communication . htm unix - environment . htm

Note: To execute your any program available in current directory you would execute using./program_name
OEGSYRSR {KSfft {ONRLIAY

Shell scripts have several required constructs that tell the shell environment what to do and when to do it. Of
course, most scripts are more complex than above one.

The shell is, after all, a real programming language, complete with variables, control structures, and so forth. No
matter how complicated a script gets, however, it is still just a list of commands executed sequentially.

Following script use the read command which takes the input from the keyboard and assigns it as the value of the
variable PERSON and finally prints it on STDOUT.

#!/bin/sh

Author : Zara Al
Copyright (c) Tutorialspoint.com
Script follows here:

echo "What is your name?"
read PERSON
echo "Hello, $PERSON"

Here is sample run of the script:

$./ test .sh

What is your name ?
Zara Ali

Hello , Zara Al

$

TUTORIALS POINT
Simply Easy Learning

Unix - Using Variables

variable is a character string to which we assign a value. The value assigned could be a number, text,

filename, device, or any other type of data.

A variable is nothing more than a pointer to the actual data. The shell enables you to create, assign, and delete
variables.

+ NAFO6ES blYSay

The name of a variable can contain only letters (ato z or A to Z), numbers (0 to 9) or the underscore character (
).

By convention, Unix Shell variables would have their names in UPPERCASE.

The following examples are valid variable names:
_ALI
TOKEN_A

VAR 1
VAR 2

Following are the examples of invalid variable names:
2_VAR

- VARIABLE

VARL VAR2

VAR_A

The reason you cannot use other characters such as !,*, or - is that these characters have a special meaning for
the shell.

58FTAYAYI +FNAIO6f SAaY
Variables are defined as follows:
variable_name =variable_value

For example:

TUTORIALS POINT
Simply Easy Learning

NAME"Zara Ali"

Above example defines the variable NAME and assigns it the value "Zara Ali". Variables of this type are called
scalar variables. A scalar variable can hold only one value at a time.

The shell enables you to store any value you want in a variable. For example:

VARI="Zara Ali"
VAR2-100

l O0SaaAy3d x| tdzSay
To access the value stored in a variable, prefix its name with the dollar sign ($):
For example, following script would access the value of defined variable NAME and would print it on STDOUT:

#!/bin/sh

NAME"Zara Ali"
echo SNAME

This would produce following value:

Zara Ali

wSiRRte +£FNXlofSay

The shell provides a way to mark variables as read-only by using the readonly command. After a variable is
marked read-only, its value cannot be changed.

For example, following script would give error while trying to change the value of NAME:

#!/bin/sh
NAME"Zara Ali"
readonly NAME
NAME"Qadiri"

This would produce following result:

/bin/ sh: NAME This variable is read only

''VASGOAY3 = NAIl o6t Say

Unsetting or deleting a variable tells the shell to remove the variable from the list of variables that it tracks. Once
you unset a variable, you would not be able to access stored value in the variable.

Following is the syntax to unset a defined variable using the unset command:
unset variable_name
Above command would unset the value of a defined variable. Here is a simple example:

#!/bin/sh

TUTORIALS POINT
Simply Easy Learning

NAME"Zara Ali"
unset NAME
echo $SNAME

Above example would not print anything. You cannot use the unset command to unset variables that are
marked readonly .

tI NAFOof S ¢cellJSay
When a shell is running, three main types of variables are present:

q Local Variables: A local variable is a variable that is present within the current instance of the shell. It is not
available to programs that are started by the shell. They are set at command prompt.

T Environment Variables: An environment variable is a variable that is available to any child process of the
shell. Some programs need environment variables in order to function correctly. Usually a shell script
defines only those environment variables that are needed by the programs that it runs.

T Shell Variables: A shell variable is a special variable that is set by the shell and is required by the shell in
order to function correctly. Some of these variables are environment variables whereas others are local
variables.

TUTORIALS POINT
Simply Easy Learning

Unix -Special Variables

revious tutorials warned about using certain nonalphanumeric characters in your variable names. This is

because those characters are used in the names of special Unix variables. These variables are reserved for
specific functions.

For example, the $ character represents the process ID number, or PID, of the current shell:

$echo $$

Above command would write PID of the current shell:

29949

The following table shows a number of special variables that you can use in your shell scripts:
Variable Description

$0 The filename of the current script.

These variables correspond to the arguments with which a script was invoked. Here n is a positive
$n decimal number corresponding to the position of an argument (the first argument is $1, the second
argument is $2, and so on).

$# The number of arguments supplied to a script.
$* All the arguments are double quoted. If a script receives two arguments, $* is equivalent to $1 $2.
All the arguments are individually double quoted. If a script receives two arguments, $@ is equivalent
$@
to $1 $2.
$? The exit status of the last command executed.
$$ The process number of the current shell. For shell scripts, this is the process ID under which they are
executing.
$! The process number of the last background command.

TUTORIALS POINT
Simply Easy Learning

| 2YYHYAR/S | NBdzYSy day

The command-line arguments $1, $2, $3,...$9 are positional parameters, with $0 pointing to the actual command,
program, shell script, or function and $1, $2, $3, ...$9 as the arguments to the command.

Following script uses various special variables related to command line:
#!/bin/sh

echo "File Name: $0"

echo "First Parameter : $1"

echo "First Parameter : $2"

echo "Quoted Values: $@"

echo "Quoted Values: $*"

echo "Total Number of Parameters : $#"

Here is a sample run for the above script:

$./ test .sh zara Al

Filer Name: ./ test .sh

First Parameter : Zara

First Parameter : Ali

Quoted Values : Zara Al

Quoted Values : Zara Ali

Total Number of Parameters : 2

{LISOAIFT tINY¥YSGSNE PF I YR

There are special parameters that allow accessing all of the command-line arguments at once. $* and $@ both
will act the same unless they are enclosed in double quotes, ™.

Both the parameter specifies all command-line arguments but the "$*" special parameter takes the entire list as
one argument with spaces between and the "$@" special parameter takes the entire list and separates it into
separate arguments.

We can write the shell script shown below to process an unknown number of command-line arguments with either
the $* or $@ special parameters:

#/bin/s h

for TOKENin $*
do

echo $TOKEN
done

There is one sample run for the above script:

$./ test .sh Zara Ali 10 Years Old
Zara

Ali

10

Years

Old

Note: Here do...done is a kind of loop which we would cover in subsequent tutorial.

TUTORIALS POINT
Simply Easy Learning

O9EAU { Ul UddzayY
The $? variable represents the exit status of the previous command.

Exit status is a numerical value returned by every command upon its completion. As a rule, most commands
return an exit status of 0 if they were successful, and 1 if they were unsuccessful.

Some commands return additional exit statuses for particular reasons. For example, some commands
differentiate between kinds of errors and will return various exit values depending on the specific type of failure.

Following is the example of successful command:

$./ test .sh zara Al

Filer Name: ./ test .sh
First Parameter : Zara
First Parameter : Ali
Quoted Values : Zara Ali
Quoted Values : Zara Ali

Total Number of Parameters : 2
$echo $?

0

$

TUTORIALS POINT
Simply Easy Learning

Unix 0 Using Arrays

shell variable is capable enough to hold a single value. This type of variables are called scalar

variables.

Shell supports a different type of variable called an array variable that can hold multiple values at the same time.
Arrays provide a method of grouping a set of variables. Instead of creating a new name for each variable that is
required, you can use a single array variable that stores all the other variables.

All the naming rules discussed for Shell Variables would be applicable while naming arrays.
5STAYAYI I NN} & I fdsSay

The difference between an array variable and a scalar variable can be explained as follows.

Say that you are trying to represent the names of various students as a set of variables. Each of the individual
variables is a scalar variable as follows:

NAMEOE"Zara"
NAMEOZ"Qadir"
NAMEOQO3="Mahnaz"
NAMEO4"Ayan"
NAMEO5"Daisy"

We can use a single array to store all the above mentioned names. Following is the simplest method of creating
an array variable is to assign a value to one of its indices. This is expressed as follows:

array_name [index]= value

Here array_name is the name of the array, index is the index of the item in the array that you want to set, and
value is the value you want to set for that item.

As an example, the following commands:

NAMEO]= "Zara"

NAME 1]= "Qadir"

NAME 2]= "Mahnaz"

NAME 3]= "Ayan"
NAME4]= "Daisy"

If you are using ksh shell the here is the syntax of array initialization:

TUTORIALS POINT
Simply Easy Learning

set - A array_name valuel value2 ... valuen
If you are using bash shell the here is the syntax of array initialization:

array_name =(valuel .. valuen)

1 OO0S&aaAay3a ! NNy e +I fdzsSay
After you have set any array variable, you access it as follows:

${ array_name [index]}

Here array_name is the name of the array, and index is the index of the value to be accessed. Following is the
simplest example:

#l/bin/s h

NAMEO]= "Zara"

NAME 1]= "Qadir"

NAME 2]= "Mahnaz"

NAME 3]= "Ayan"

NAME 4]= "Daisy"

echo "First Index: ${NAMEJ[O0]}"
echo "Second Index: ${NAME[1]}"

This would produce following result:

$./ test .sh
First Index : Zara
Second Index : Qadir

You can access all the items in an array in one of the following ways:

${ array_name [*]}
${ array_name [@]}

Here array_name is the name of the array you are interested in. Following is the simplest example:
#l/bin/sh

NAME 0]= "Zara"

NAME 1]= "Qadir"

NAME 2]= "Mahnaz"

NAME 3]= "Ayan"

NANE[4]= "Daisy"

echo "First Method: ${NAME[*]}"
echo "Second Method: ${NAME[@]}"

This would produce following result:

$./ test .sh
First Method: Zara Qadir Mahnaz Ayan Daisy
Second Method: Zara Qadir Mahnaz Ayan Daisy

TUTORIALS POINT
Simply Easy Learning

Unix - Basic Operators

here are various operators supported by each shell. Our tutorial is based on default shell (Bourne) so we

are going to cover all the important Bourne Shell operators in the tutorial.
There are following operators which we are going to discuss:

T Arithmetic Operators.

q Relational Operators.

q Boolean Operators.

T String Operators.

q File Test Operators.

The Bourne shell didn't originally have any mechanism to perform simple arithmetic but it uses external programs,
either awk or the must simpler program expr .

Here is simple example to add two numbers:
#!/bin/sh

val ="expr2 +2°
echo "Total value : $val"

This would produce following result:

Total value : 4

There are following points to note down:

 There must be spaces between operators and expressions for example 2+2 is not correct, where as it should
be written as 2 + 2.

Complete expression should be enclosed between ™, called inverted commas.

TUTORIALS POINT
Simply Easy Learning

I NAGKYSGAO hLISNYG2NARY

There are following arithmetic operators supported by Bourne Shell.

Assume variable a holds 10 and variable b holds 20 then:

Operator Description Example

+ Addition - Adds values on either side of the operator e_xpr_$a * $b
will give 30

- Subtraction - Subtracts right hand operand from left hand operand e_xpr_$a - $b
will give -10

G - . . ‘expr $a * $b’

* Multiplication - Multiplies values on either side of the operator will give 200

/ Division - Divides left hand operand by right hand operand e_xpr_$b /$a
will give 2
. 5 .

% Modulus - Divides left hand operand by right hand operand and returns remainder viiﬁpgri\?: OA) 2
a=%b would

= Assignment - Assign right operand in left operand assign value of
binto a
[$a==$b]

== Equality - Compares two numbers, if both are same then returns true. would return
false.
[$a!=$b]

I= Not Equality - Compares two numbers, if both are different then returns true. would return
true.

It is very important to note here that all the conditional expressions would be put inside square braces with one
spaces around them, for example [$a == $b] is correct where as [$a==$b] is incorrect.

All the arithmetical calculations are done using long integers.

Example:

Here is an example which uses all the arithmetic operators:
#!/bin/sh

a=10

b=20

val ="expr $a + $b°

echo "a+b:$val"

val =expr$a - $b°
echo "a - b:$val

val ='expr $a *$b
echo "a*b: $val"

TUTORIALS POINT
Simply Easy Learning

val ="expr $b / $a’
echo "b/a: $val"

val ="expr $b % $a’
echo "b % a: $val"

if [$a == $b]
then

echo "ais equal to b"
fi

if [$a != $b]
then

echo "ais not equal to b"
fi

This would produce following result:

a+b: 30
a-b: -10
a* b: 200
b/ a: 2
b %a: 0
a is not equaltob

There are following points to note down:

 There must be spaces between operators and expressions for example 2+2 is not correct, where as it should
be written as 2 + 2.

Complete expression should be enclosed between ™, called inverted commas.
9 You should use \ on the * symbol for multiplication.
9 if..then...fi statement is a decision making statement which has been explained in next chapter.

wSETFOA2Y It hLISNY 02NARY

Bourne Shell supports following relational operators which are specific to numeric values. These operators would
not work for string values unless their value is numeric.

For example, following operators would work to check a relation between 10 and 20 as well as in between "10"
and "20" but not in between "ten" and "twenty".

Assume variable a holds 10 and variable b holds 20 then:

Operator Description Example
[$a-eq

-eq Checks if the value of two operands are equal or not, if yes then condition becomes true. $b]is
not true.
[$a -ne

Checks if the value of two operands are equal or not, if values are not equal then

-ne o
condition becomes true.

$b1is
true.

TUTORIALS POINT
Simply Easy Learning

Checks if the value of left operand is greater than the value of right operand, if yes then [$a-gt

-gt - $blis
condition becomes true. ot true.
It Checks if the value of left operand is less than the value of right operand, if yes then Esﬁe]l I;t
condition becomes true.
true.
-ge Checks if the value of left operand is greater than or equal to the value of right operand, éﬁe]l i'ge
9 if yes then condition becomes true.
not true.
Je Checks if the value of left operand is less than or equal to the value of right operand, if [$§e]1 i—;e
yes then condition becomes true. true

It is very important to note here that all the conditional expressions would be put inside square braces with one
spaces around them, for example [$a <= $b] is correct where as [$a <= $b] is incorrect.

Example:

Here is an example which uses all the relational operators:

#1/bin/sh

if [$a -eq$b |
echo "$a -eq$b:aisequaltob”

echo "$a -eq $b: ais not equal to b"

if [$a -ne$b |
echo "$a -ne $b: ais not equal to b"

echo "$a -ne $b:aisequaltob"

if [$a -gt$b |
echo "$a - gt $b: ais greater than b"

echo "$a - gt $b: ais not greater than b"

if [$a -1t$b]
echo "$a -It $b: aislessthan b"
echo "$a -It$b: ais not less than b"
if [$a -ge$hb |

then
echo "$a -ge $b:aisgrea ter or equal to b"

TUTORIALS POINT
Simply Easy Learning

else
echo
fi

if [%a
then
echo
else
echo
fi

"$a - ge $b: ais not greater or equal to b

le$b]

"$a -le $b: ais less or equal to b"

"$a -le $b: ais not less or equal to b"

This would produce following result:

10 -eq
10 -ne
10 -gt
10 -1t
10 -ge
10 -le

20:
20:
20:
20:
20:
20:

is not equaltob

is not equaltob

is not greaterthanb

is lessthanb

is not greater or equaltob
is less or equaltob

DO DYDY

There are following points to note down:

9 There must be spaces between operators and expressions for example 2+2 is not correct, where as it should
be written as 2 + 2.

9 if...then...else...fi statement is a decision making statement which has been explained in next chapter.

.22t SIY hLISNY 02NAY

There are following boolean operators supported by Bourne Shell.

Assume variable a holds 10 and variable b holds 20 then:

Operator

Description

This is logical negation. This inverts a true condition into false and vice versa.

This is logical OR. If one of the operands is true then condition would be true.

This is logical AND. If both the operands are true then condition would be true otherwise it
would be false.

OEI YLX SY

Here is an example which uses all the boolean operators:

#!/bin/sh

Example

[!false]
is true.

[$a -t
20-0%b
-gt 100]
is true.

[$a-It

20-a $b
-gt 100]
is false.

TUTORIALS POINT
Simply Easy Learning

b=20
if [$a != $b]
then
echo "$a!=$b: ais not equal to b"
else

echo "$a !=$b: ais equal to b"

if [$a -It 100 -a$h -gt 15 |
echo "$a -1t100 -a$h -gtil5: returns true"

echo "$a -It100 -a$b -gt15:returns false"

if [$a -t 100 -o$b -gt 100]

echo "$a -1t100 -o0$b -gt100: returns true"

echo "$a -1t100 -0$b -gt100: returns false"
if [$a -It 5 -0%b -gt 100]
then

echo "$a -1t100 -o0$b -gt100: returns true"
else

echo "$a -1t100 -o0$b -gt100: returns false"
fi

This would produce following result:

10 = 20 : ais not equaltob

10 -It 100 -a 20 -gt 15 : returns true

10 -It 100 -o 20 -gt 100 : returns true
10 -It 5 -0 20 -gt 100 : returns false

There are following points to note down:

 There must be spaces between operators and expressions for example 2+2 is not correct, where as it should
be written as 2 + 2.

 if..then...else...fi statement is a decision making statement which has been explained in next chapter.

fONARAY3I hLISNFO02NRY

There are following string operators supported by Bourne Shell.

Assume variable a holds "abc" and variable b holds "efg" then:

Operator Description Example
[$a=$%b

= Checks if the value of two operands are equal or not, if yes then condition becomes true.]is not
true.

TUTORIALS POINT
Simply Easy Learning

Str

Checks if the value of two operands are equal or not, if values are not equal then condition

becomes true.

Checks if the given string operand size is zero. If it is zero length then it returns true.

Checks if the given string operand size is non-zero. If it is non-zero length then it returns

true.

Check if str is not the empty string. If it is empty then it returns false.

OEI YLX SY

Here is an example which uses all the string operators:

#1/bin/sh

a="abc"
b="efg"

if [%a
then
echo
else
echo
fi

if [$a
then
echo
else
echo
fi

= $b]

"$a = $b: ais equal to b"

"$a = $b: a is not equal to b"

I= $b

]

"$a != $b : ais not equal to b"

"$a != $b: ais equal to b"

if [-z%a]

then
echo
else
echo
fi

"-z%a

"-z%a

if [-n$a |

then
echo
else
echo
fi

if [$a
then
echo
else
echo
fi

"-n%a:

"-n%a

]

: string length is zero"

: string length is not zero"

: string length is zero"

"$a : string is not empty"

"$a : string is empty"

string length is not zero"

[$a!l=
$b]is
true.

[-z%a]
is not
true.

[-z%a]
is not
false.

[$a]is
not false.

TUTORIALS POINT
Simply Easy Learning

This would produce following result:

abc = efg: a is not equaltob

abc = efg : ais not equaltob
-zabc : string length is not zero
-nabc : string length is not zero

abc : string iS not empty

There are following points to note down:

I There must be spaces between operators and expressions for example 2+2 is not correct, where as it should
be written as 2 + 2.

9 if...then...else...fi statement is a decision making statement which has been explained in next chapter.
CAEtS ¢Said hLISNYuUuz2NAY
There are following operators to test various properties associated with a Unix file.

Assume a variable file holds an existing file name "test" whose size is 100 bytes and has read, write and execute
permission on:

Operator Description Example
-b file Checks if file is a block special file if yes then condition becomes true. i[s_?a?sfge]
-c file Checks if file is a character special file if yes then condition becomes true. i[s_?a?sfge]
[-d $file]
-d file Check if file is a directory if yes then condition becomes true. is not
true.

file Check if file is an ordinary file as opposed to a directory or special file if yes then [-f $file]

condition becomes true. is true.
) e [-g $file]

-g file Checks if file has its set group ID (SGID) bit set if yes then condition becomes true. is false
) e [-k $file]

-k file Checks if file has its sticky bit set if yes then condition becomes true. is false
) e L . [-p $file]

-p file Checks if file is a named pipe if yes then condition becomes true. is false
tfile Checks if file descriptor is open and associated with a terminal if yes then condition [-t $file]

becomes true. is false.
) e [-u $file]

-u file Checks if file has its set user id (SUID) bit set if yes then condition becomes true. is false
i o . . [-r $file]

-r file Checks if file is readable if yes then condition becomes true. is true

-w file Check if file is writable if yes then condition becomes true. [-w $file

TUTORIALS POINT
Simply Easy Learning

-x file Check if file is execute if yes then condition becomes true.
-s file Check if file has size greater than 0 if yes then condition becomes true.
-e file Check if file exists. Is true even if file is a directory but exists.

OEI YLX SY

Here is an example which uses all the file test operators:

]is true.

[-x $file]
is true.

[-s $file]
is true.

[-e $file]
is true.

Assume a variable file holds an existing file hame "/var/wwwi/tutorialspoint/unix/test.sh" whose size is 100 bytes

and has read, write and execute permission on:
#!/bin/sh
file ="/var/wwwi/tutorialspoint/unix/test.sh"

it [-r$file]

then
echo "File has read access"
else
echo "File does not have read access"
fi
if [-w $fle]
then
echo "File has write permission"
else
echo "File does not have write permission”
fi
if [-x$file]
then
echo "File has execute permission”
else
echo "File does not have execute permission”
fi
if [-f$file]
then
echo "Filei s an ordinary file"
else
echo "This is sepcial file"
fi
if [-d$file]
then
echo "File is a directory"
else

echo "This is not a directory"
fi

if [-s$file]
then

TUTORIALS POINT
Simply Easy Learning

echo "File size is zero"
else

echo "File size is not zero"
fi
if [-e$fil e]
then

echo "File exists"
else

echo "File does not exist"
fi
This would produce following result:

File has read access

File has write permission
File has execute permission
File is an ordinary file
This is not a directory
File size is zero

File exi sts

There are following points to note down:

T There must be spaces between operators and expressions for example 2+2 is not correct, where as it
should be written as 2 + 2.

T if...then...else...fi statement is a decision making statement which has been explained in next chapter.
[{KStf hLISN)YuzNAY

This lists down all the operators available in C Shell. Here most of the operators are very similar to what we have
in C Programming language.

Operators are listed in order of decreasing precedence:

I NA UWKYVSAN®RF f[2h LISNI 02 NR Y
Operator Description

() Change precedence

~ 1's complement

! Logical negation

* Multiply
/ Divide
% Modulo
+ Add

- Subtract
<< Left shift

TUTORIALS POINT
Simply Easy Learning

>>

%=

CAf S

Right shift

String comparison for equality
String comparison for non equality
Pattern matching

Bitwise "and"

Bitwise "exclusive or"

Bitwise "inclusive or"

Logical "and"

Logical "or"

Increment

Decrement

Assignment

Multiply left side by right side and update left side
Divide left side by right side and update left side
Add left side to right side and update left side
Subtract left side from right side and update left side

"Exclusive or" left side to right side and update left side

Divide left by right side and update left side with remainder

¢Said hLISN}G2NAY

There are following operators to test various properties associated with a Unix file.

Operator
-r file
-w file

-x file
-f file
-z file
-d file
-e file

-o file

Description

Checks if file is readable if yes then condition becomes true.
Check if file is writable if yes then condition becomes true.
Check if file is execute if yes then condition becomes true.

Check if file is an ordinary file as opposed to a directory or special file if yes then condition
becomes true.

Check if file has size greater than 0 if yes then condition becomes true.
Check if file is a directory if yes then condition becomes true.
Check if file exists. Is true even if file is a directory but exists.

Check if user owns the file. It returns true if user is the owner of the file.

TUTORIALS POINT
Simply Easy Learning

Y2ZNY {KStf hLISN}I2NRY

This lists down all the operators available in Korn Shell. Here most of the operators are very similar to what we
have in C Programming language.

Operators are listed in order of decreasing precedence:

I NAOGKYWRIA@IAOFE hLISNY G2NAY

Operator Description
+ Unary plus
- Unary minus

I~ Logical negation; binary inversion (one's complement)

* Multiply

/ Divide

% Modulo

+ Add

- Subtract
<< Left shift
>> Right shift

== String comparison for equality

I= String comparison for non equality
= Pattern matching

& Bitwise "and"

A Bitwise "exclusive or"

| Bitwise "inclusive or"

&& Logical "and"
Il Logical "or"
++ Increment

-- Decrement

= Assignment

CAtS ¢Sau hLISNYYuUuz2NaAY
There are following operators to test various properties associated with a Unix file.

Operator Description

TUTORIALS POINT
Simply Easy Learning

-r file

-w file

-x file

-f file

-s file

-d file

-e file

Checks if file is readable if yes then condition becomes true.
Check if file is writable if yes then condition becomes true.
Check if file is execute if yes then condition becomes true.

Check if file is an ordinary file as opposed to a directory or special file if yes then condition
becomes true.

Check if file has size greater than 0 if yes then condition becomes true.
Check if file is a directory if yes then condition becomes true.

Check if file exists. Is true even fif file is a directory but exists.

TUTORIALS POINT
Simply Easy Learning

Unix 0 Decision Making

hile writing a shell script, there may be a situation when you need to adopt one path out of the given

two paths. So you need to make use of conditional statements that allow your program to make correct decisions
and perform right actions.

Unix Shell supports conditional statements which are used to perform different actions based on different
conditions. Here we will explain following two decision making statements:

Theif...else statements
M The case...esac statement

¢CKS ATPPPSt asS aduvliusSysSyduay
If else statements are useful decision making statements which can be used to select an option from a given set

of options.

Unix Shell supports following forms of if..else statement:

ATOPOOFA adl 0SYSyY

The if...fi statement is the fundamental control statement that allows Shell to make decisions and execute
statements conditionally.

{8y il EY

if [expression]
then

Statement (s) to be executed if expression is true
fi

Here Shell expressionis evaluated. If the resulting value istrue, given statement(s) are executed. If
expression is false then no statement would be not executed. Most of the times you will use comparison operators
while making decisions.

Give you attention on the spaces between braces and expression. This space is mandatory otherwise you would
get syntax error.

If expression is a shell command then it would be assumed true if it return O after its execution. If it is a boolean
expression then it would be true if it returns true.

TUTORIALS POINT
Simply Easy Learning

http://www.tutorialspoint.com/unix/if-fi-statement.htm

OEI YLX SY

#!/bin/sh

if [$a == $b |
then

echo "ais equal to b"
fi

if [$a != $b]
then
echo "ais not equal to b"
fi
This will produce following result:

a is not equaltob

ATOPPDPSE AaSOPPPTFA A0l GSYSY

The if...else...fi statement is the next form of control statement that allows Shell to execute statements in more
controlled way and making decision between two choices.

[eyilEY

if [expression |

then

Statement (s) to be executed if expression is true
else

Statement (s) to be executed if expression is not true

fi

Here Shell expressionis evaluated. If the resulting value istrue, given statement(s) are executed. If
expression is false then no statement would be not executed.

If we take above example then it can be written in better way using if...else statement as follows:

#!/bin/sh

if [$a == $b]
then

echo "ais equal to b"
else

echo "ais not equal to b"
fi

This will produce following result:

a is not equaltob

TUTORIALS POINT
Simply Easy Learning

ATOPOPOSEATOOPSE ASOPOPDPFA adl

The if...elif...fi statement is the one level advance form of control statement that allows Shell to make correct
decision out of several conditions.

{eyidlEY

if [expression 1]

then

Statement (s) to be executed if expression 1 is true
elif [expression 2]
then

Statement (s) to be executed if expression 2 is true
elif [expres sion 3]
then

Statement (s) to be executed if expression 3 is true
else

Statement (s) to be executed if no expression is true

fi

There is nothing special about this code. It is just a series of if statements, where each if is part of theelse clause
of the previous statement. Here statement(s) are executed based on the true condition, if non of the condition is
true then else block is executed.

OEI YLX SY

#!/bin/sh

if [$a == $b |
then

echo "ais equalto b"
elif [$a -gt$h]
then

echo "ais greater than b"
elif [%a -lt$b]
then

echo "ais less than b"
else

echo "None of the condition met"
fi

This will produce following result:
a is lessthanb

Most of the if statements check relations using relational operators discussed in previous chapter.

A~ —~ v oA A v —~ % A A %
¢CKS OlFlaSopdSal O {ualaSYSyuay
You can use multiple if...elif statements to perform a multiway branch. However, this is not always the best

solution, especially when all of the branches depend on the value of a single variable.

Unix Shell supports case...esac statement which handles exactly this situation, and it does so more efficiently
than repeated if...elif statements.

TUTORIALS POINT
Simply Easy Learning

There is only one form of case...esac statement which is detailed here:
4 v A A v 4 o SA s o
O aSoPodSal O auludaSYSyd

You can use multiple if...elif statements to perform a multiway branch. However, this is not always the best
solution, especially when all of the branches depend on the value of a single variable.

Shell support case...esac statement which handles exactly this situation, and it does so more efficiently than
repeated if...elif statements.

{eyul EY
The basic syntax of the case...esac statement is to give an expression to evaluate and several different
statements to execute based on the value of the expression.

The interpreter checks each case against the value of the expression until a match is found. If nothing matches, a
default condition will be used.

case word in
patternl)
Statement (s) to be executed

f patte rnl matches

pattern2)
Statement (s) to be executed

f pattern2 matches

pattern3)
Statement (s) to be executed

f pattern3 matches

esac

Here the string word is compared against every pattern until a match is found. The statement(s) following the
matching pattern executes. If no matches are found, the case statement exits without performing any action.

There is no maximum number of patterns, but the minimum is one.

When statement(s) part executes, the command ;; indicates that program flow should jump to the end of the entire
case statement. This is similar to break in the C programming language.

OFEF YLX SY
#!/bin/sh

FRUIT="kiwi"

case "$FRUIT" in
"apple”) echo "Apple pie is quite tasty.”

:'banana") echo "llikeb anana nut bread."
:']<iwi") echo "New Zealand is famous for kiwi."

esac
This will produce following result:
New Zealand is famous for kiwi

A good use for a case statement is the evaluation of command line arguments as follows:

TUTORIALS POINT
Simply Easy Learning

http://www.tutorialspoint.com/unix/case-esac-statement.htm

#1/bin/sh

option ="${1}"
case ${option } in
-f) FILE ="${2}"
echo "File name is $FILE"

-d) DIR="${2}"
echo "Dir name is $DIR"

" =
echo '"basename ${0} :usage: [- ffile] | [- d directory]"
exit 1 # Commandtocome out of the program with status 1

esac
Here is a sample run of this program:

$./ test .sh

test .sh: usage: [-ffilename] | [-ddirectory]
$./ test .sh -findex .htm

$ vi test . sh

$./ test .sh -findex .htm

File name is index . htm

$./ test .sh -dunix

Dir name is unix

$

Unix Shell's case...esac is very similar to switch...case statement we have in other programming languages like
C or C++ and PERL etc.

TUTORIALS POINT
Simply Easy Learning

Unix 0 Shell Loops

oops are a powerful programming tool that enable you to execute a set of commands repeatedly. In this

tutorial, you would examine the following types of loops available to shell programmers:

¢tKS GKAES f22LJ

The while loop enables you to execute a set of commands repeatedly until some condition occurs. It is usually
used when you need to manipulate the value of a variable repeatedly.

{&y il EY

while command
do

Statement (s) to be executed if command is true
done

Here Shellcommandis evaluated. If the resulting value istrue, given statement(s)are executed. If
command is false then no statement would be not executed and program would jump to the next line after done
statement.

OEI YLX SY

Here is a simple example that uses the while loop to display the numbers zero to nine:

#!/bin/sh
a=0
while [$a -It 10]
do
echo $a
a=expr$a+ 1’
done

This will produce following result:

A WNPEFO

TUTORIALS POINT
Simply Easy Learning

© 00~ O

Each time this loop executes, the variable a is checked to see whether it has a value that is less than 10. If the
value of a is less than 10, this test condition has an exit status of 0. In this case, the current value of a is
displayed and then a is incremented by 1.

¢tKS FT2NJf22LJ]

The for loop operate on lists of items. It repeats a set of commands for every item in a list.

[eyilEY

for var in wordlword2 .. wordN
do

Statement (s) to be executed for every word
done

Here var is the name of a variable and wordl to wordN are sequences of characters separated by spaces
(words). Each time the for loop executes, the value of the variable var is set to the next word in the list of words,
word1 to wordN.

OEI YLX SY

Here is a simple example that uses for loop to span through the given list of numbers:

#!/bin/sh
for var in 012345678029
do
echo $var
done

This will produce following result:

O©CoO~NOOUId,WNEO

Following is the example to display all the files starting with .bash and available in your home. I'm executing this
script from my root:

#!/bin/sh
for FILE in $HOME bash *
do

echo $FILE

TUTORIALS POINT
Simply Easy Learning

done

This will produce following result:

/root/ . bash_history
/ root /. bash_logout
/ root /. bash_profile
/ root /. bashrc

¢KS dzyGAaf f22LJ

The while loop is perfect for a situation where you need to execute a set of commands while some condition is
true. Sometimes you need to execute a set of commands until a condition is true.

{eyialEY
until command
do
Statement(s) to be executed until command is true

done

Here Shellcommandis evaluated. If the resulting value is false, given statement(s) are executed.
Ifcommand is true then no statement would be not executed and program would jump to the next line after done
statement.

OQEI YLIX SY
Here is a simple example that uses the until loop to display the numbers zero to nine:
#!/bin/sh
a=0
until [! $a -1t10]
do
echo $a
a="expr $a + 1°

done

This will produce following result:

0

TUTORIALS POINT
Simply Easy Learning

¢KS asSftsSod f22LJ
The select loop provides an easy way to create a numbered menu from which users can select options. It is
useful when you need to ask the user to choose one or more items from a list of choices.

{ey il EY

select var in wordlword2 .. wordN
do

Statement (s) to be executed for every word
done

Here var is the name of a variable and wordl to wordN are sequences of characters separated by spaces
(words). Each time the for loop executes, the value of the variable var is set to the next word in the list of words,
word1 to wordN.

For every selection a set of commands would be executed with-in the loop. This loop was introduced in ksh and
has been adapted into bash. It is not available in sh.

OEI YL SY
Here is a simple example to let the user select a drink of choice:
#!/bin/ksh

select DRINK in tea cofee water juice appe all none
do
case $DRINK in
tea | cofee | water | all)
echo "Go to canteen"

juice | appe)
echo "Available at home"

Hone)
break

*) echo "ERROR: Invalid selection”
esac
done

The menu presented by the select loop looks like the following:

$./ test .sh
1) tea

2) cofee
3) water

TUTORIALS POINT
Simply Easy Learning

4) juice

5) appe

6) all

7) none

#7? juice

Available atho me
#? none

$

You can change the prompt displayed by the select loop by altering the variable PS3 as follows:

$PS3="Please make a selection =>" ; export PS3
$./ test .sh

1) tea

2) cofee

3) water

4) juice

5) appe

6) all

7) none

Please make a selection => juic e
Available at home

Please make a selection => none
$

You would use different loops based on dfferent situation. For example while loop would execute given
commands until given condition remains true where as until loop would execute until a given condition becomes
true.

Once you have good programming practice you would start using appropriate loop based on situation. Here while
and for loops are available in most of the other programming languages like C, C++ and PERL etc.

bSaGdAy3a [22LAY

All the loops support nesting concept which means you can put one loop inside another similar or different loops.
This nesting can go upto unlimited number of times based on your requirement.

Here is an example of nesting while loop and similar way other loops can be nested based on programming
requirement:

bSAGAY3 6KAES [22LAY
It is possible to use a while loop as part of the body of another while loop.

{eyGl EY

\év:ne commandl ; # this is loopl, the outer loop

Statement (s) to be executed if commandl is true

while command2 ; # this is loop2, the inner loop

do
Statement (s) to be executed if command2 is true
done
Statement (s) to be executed if commandl is true
done

TUTORIALS POINT
Simply Easy Learning

OEI YLX SY

Here is a simple example of loop nesting, let's add another countdown loop inside the loop that you used to count
to nine:

#!/bin/sh
a=0
while ["$a" -It 10] # this is loopl
do
b="$a"
while ["$b" -ge 0] #thisisloop2
do
echo -n "$b"
b="expr$b - 1°
done
echo
a="expr $a +1°
done

This will produce following result. It is important to note how echo -n works here. Here -n option let echo to avoid
printing a new line character.

©Co~NOOUhWNEO
oO~NoO O, WNEO
~N~No o~ wWNEFE O
OO~ WNEFEO
abhwNEF O

A wWNEFO

wWN PO

N~ O

= O

TUTORIALS POINT
Simply Easy Learning

Unix 0 Loop Control

far you have looked at creating loops and working with loops to accomplish different tasks. Sometimes

you need to stop a loop or skip iterations of the loop.
In this tutorial you will learn following two statements used to control shell loops:

1. The break statement
2. The continue statement

¢KS AYTFAYAOUS [22LY

All the loops have a limited life and they come out once the condition is false or true depending on the loop.

A loop may continue forever due to required condition is not met. A loop that executes forever without terminating
executes an infinite number of times. For this reason, such loops are called infinite loops.

Here is a simple example that uses the while loop to display the numbers zero to nine:
#l/bin/sh
a=10

while [$a -It 10]
do
echo $a
a=expr$a+1’
done

This loop would continue forever because a is alway greater than 10 and it would never become less than 10. So
this true example of infinite loop.

¢KS ONBIF] adadlrasysSyay
The break statement is used to terminate the execution of the entire loop, after completing the execution of all of
the lines of code up to the break statement. It then steps down to the code following the end of the loop.

TUTORIALS POINT
Simply Easy Learning

{eyil EY

The following break statement would be used to come out of a loop:

break

The break command can also be used to exit from a nested loop using this format:
break n

Here n specifies the nth enclosing loop to exit from.

9EI YLX SY

Here is a simple example which shows that loop would terminate as soon as a becomes 5:

#/bi n/sh
a=0
while [$a -It 10]
do
echo $a
if [$a -eq 5]
then

break
fi
a=expr$a+ 1
done

This will produce following result:

absrwWNPREO

Here is a simple example of nested for loop. This script breaks out of both loops if varl equals 2 and var2 equals
0:

#!/bin/sh

for varl in 1 2 3
do
for var2 in 05
do
if [$varl -eq 2 -a$var2 -eq O]
then
break 2
else
echo "$varl $var2"
fi
done
done

This will produce following result. In the inner loop, you have a break command with the argument 2. This
indicates that if a condition is met you should break out of outer loop and ultimately from inner loop as well.

TUTORIALS POINT
Simply Easy Learning

¢KS O2yUAydzS adalasSySyuay

The continue statement is similar to the break command, except that it causes the current iteration of the loop to
exit, rather than the entire loop.

0
5

This statement is useful when an error has occurred but you want to try to execute the next iteration of the loop.
{eyul EY
continue

Like with the break statement, an integer argument can be given to the continue command to skip commands
from nested loops.

continue n

Here n specifies the nth enclosing loop to continue from.

The following loop makes use of continue statement which returns from the continue statement and start
processing next statement:

#!/bin/sh

NUMS"123456 7"

for NUMin $NUMS
do
Q="expr SNUM % 2°
if [$Q -eq 0]

then
echo "Number is an even number!!"
continue

fi
echo "Found odd number"
done

This will produce following result:

Found odd number
Number is an even number !
Found odd number
Number is an even number !
Found odd number
Number is an even number !
Found odd number

TUTORIALS POINT
Simply Easy Learning

Unix o Shell Substitutions
2 Kl G A& {doadGAriddzirzyK

he shell performs substitution when it encounters an expression that contains one or more special

characters.
9EI YLX SY

Following is the example, while printing value of the variable its substitued by its value. Same time "\n" is
substituted by a new line:

#!/bin/sh
a=10
echo -e "Value of ais $a \ n"

This would produce following result. Here -e option enables interpretation of backslash escapes.
Value ofa is 10

Here is the result without -e option:

Value ofa is 10\n

Here are following escape sequences which can be used in echo command:

Escape Description

\\ Backslash

\a alert (BEL)

\b Backspace

\c suppress trailing newline
\f form feed

TUTORIALS POINT
Simply Easy Learning

\n new line

\r carriage return
\t horizontal tab
\v vertical tab

You can use -E option to disable interpretation of backslash escapes (default).

You can use -n option to disable insertion of new line.

| 2YYl YR {dzoaidAddziazyy

Command substitution is the mechanism by which the shell performs a given set of commands and then
substitutes their output in the place of the commands.

{eyil EY
The command substitution is performed when a command is given as:

‘command”

When performing command substitution make sure that you are using the backquote, not the single quote
character.

OEI YLX SY

Command substitution is generally used to assign the output of a command to a variable. Each of the following
examples demonstrate command substitution:

#!/bin/sh

DATE-"date’
echo "Date is $DATE"

USERS'who |[wc - T
echo "Logged in user are SUSERS"

UP="date ; uptime"
echo "Uptime is $UP"

This will produce following result:

Date is Thu Jul 2 03:59:57 MST 2009

Logged in userare 1

Uptime is Thu Jul 2 03:59:57 MST 2009

03:59:57 up 20 days, 14:03, 1 user, loadavg : 0.13, 0.07, 0.15

+F NAF6fS {doadAaddzirzyy

Variable substitution enables the shell programmer to manipulate the value of a variable based on its state.

Here is the following table for all the possible substitutions:

TUTORIALS POINT
Simply Easy Learning

Form Description

${var} Substitue the value of var.
${var: -word} If var is null or unset, word is substituted for var. The value of var does not change.
${var:=word} If var is null or unset, var is set to the value of word .

If var is null or unset, message is printed to standard error. This checks that

${var:?message ;
{ ge} variables are set correctly.

${var:+word} If var is set, word is substituted for var. The value of var does not change.

OQEI YLIX SY
Following is the example to show various states of the above substitution:
#!/bin/sh

echo $ {var : - "Variable is not set" }
echo "1 - Value of var is ${var}"

echo $ {var := "Variable is not set" }
echo "2 - Value of var is ${var}"

unset var
echo $ {var :+ "This is default value" }
echo "3 - Value of varis $var"

var ="Prefix"
echo $ {var :+ "This is default value" }
echo "4 - Value of var is $var"

echo $ {var :? "Print this message" }
echo "5 - Value of var is ${var}"

This would produce following result:

Variable is not set
1 - Value of var is
Variable is not set
2 - Value of var is Variable is not set

3 - Value of var is

This is default value

4 - Value of var is Prefix
Prefix

5 - Value of var is Prefix

TUTORIALS POINT
Simply Easy Learning

Unix 0 Quoting Mechanisms

Ve V4 ~

¢KS aSil OKI N} Ol SN&

nix shell provides various metacharacters which have special meaning while using them in any Shell

Script and causes termination of a word unless quoted.

For example ? matches with a single charater while listing files in a directory and an * would match more than one
characters. Here is a list of most of the shell special characters (also called metacharacters):

2 01"\ $;&()|<>new -line space tab

A character may be quoted (i.e., made to stand for itself) by preceding it with a \.
9El YLX SY

Following is the example which show how to print a * or a?:

#!/bin/sh

echo Hello ; Word

This would produce following result.

Hello
J test .sh: line 2: Word: command not found

shell returned 127

Now let us try using a quoted character:
#!/bin/sh

echo Hello \; Word
This would produce following result:

Hello ; Word

TUTORIALS POINT
Simply Easy Learning

The $ sign is one of the metacharacters, so it must be quoted to avoid special handling by the shell:

#1/bin/sh

echo "l have \$1200"

This would produce following result:

| have $1200

There are following four forms of quotings:

Quoting Description

Single quote All special characters between these quotes lose their special meaning.

Most special characters between these quotes lose their special meaning with these

exceptions:
$
Double quote \$
v
W
\\
Backslash Any character immediately following the backslash loses its special meaning.

Anything in between back quotes would be treated as a command and would be
executed.

¢KS {Ay3IEtS vd2(GSay

Consider an echo command that contains many special shell characters:

Back Quote

echo <-$1500.**>; (update ?) [y|n]
Putting a backslash in front of each special character is tedious and makes the line difficult to read:
echo \<-\$1500. **\>\; \(update \?\) \[y\|n\]

There is an easy way to quote a large group of characters. Put a single quote (') at the beginning and at the end
of the string:

echo '< - $1500.**>; (update?) [y|n]'

Any characters within single quotes are quoted just as if a backslash is in front of each character. So now this
echo command displays properly.

If a single quote appears within a string to be output, you should not put the whole string within single quotes
instead you would preceed that using a backslash (\) as follows:

echo 'lt \'s Shell Programming'

TUTORIALS POINT
Simply Easy Learning

¢tKS 52dz2ofS vdz{iSay

Try to execute the following shell script. This shell script makes use of single quote:

VAR-ZARA
echo '$VAR owes < - $1500.**>; [as of (‘date +%m/%d") |'

This would produce following result:
$VAR owes <-$1500.**>; [as of (date +%m/%d)]

So this is not what you wanted to display. It is obvious that single quotes prevent variable substitution. If you want
to substitute variable values and to make invert commas work as expected then you would need to put your
commands in double quotes as follows:

VAR=ZARA
echo "$VAR owes < -\ $1500.**>; [as of (‘date +%m/%d")]"

Now this would produce following result:

ZARA owes <- $1500.**> [as of (07/02)]

Double quotes take away the special meaning of all characters except the following:
1 $ for parameter substitution.

1 Backquotes for command substitution.

1 \$to enable literal dollar signs.

1\ to enable literal backquotes.

1 \"to enable embedded double quotes.

f \\to enable embedded backslashes.

1 All other \ characters are literal (not special).

Any characters within single quotes are quoted just as if a backslash is in front of each character. So now this
echo command displays properly.

If a single quote appears within a string to be output, you should not put the whole string within single quotes
instead you whould preceed that using a backslash (\) as follows:

echo 'lt \'s Shell Programming'

¢KS . |01 vdzZzuSay
Putting any Shell command in between back quotes would execute the command

{eyil EY

Here is the simple syntax to put any Shell command in between back quotes:

TUTORIALS POINT
Simply Easy Learning

var ="command"

Following would execute date command and produced result would be stored in DATA variable.
DATE-"date’

echo "Current Date: $DATE"

This would produce following result:

Current Date: Thu Jul 2 05:28:45 MST 2009

TUTORIALS POINT
Simply Easy Learning

Unix 0 IO Redirections

ost Unix system commands take input from your terminal and send the resulting output back to

your terminal. A command normally reads its input from a place called standard input, which happens to be your
terminal by default. Similarly, a command normally writes its output to standard output, which is also your terminal
by default.

hdzi LJdzi wSRANBOUAZ2YY

The output from a command normally intended for standard output can be easily diverted to a file instead. This
capability is known as output redirection:

If the notation > file is appended to any command that normally writes its output to standard output, the output of
that command will be written to file instead of your terminal:

Check following who command which would redirect complete output of the command in users file.
$who > users
Notice that no output appears at the terminal. This is because the output has been redirected from the default

standard output device (the terminal) into the specified file. If you would check users file then it would have
complete content:

$ cat users

oko tty01 Sep 12 07: 30
ai tty15 Sep 12 13: 32
ruth tty21 Sep 12 10:10
pat tty24 Sep 12 13: 07
steve tty25 Sep 12 13:03
$

If a command has its output redirected to a file and the file already contains some data, that data will be lost.
Consider this example:

$ echo line 1 > users
$ cat users
line 1

$

You can use >> operator to append the output in an existing file as follows:

TUTORIALS POINT
Simply Easy Learning

$ echo line 2 >> users

$ cat users
line 1
line 2
$

Ly LJdziT wWSRANBOUAZYY

Just as the output of a command can be redirected to a file, so can the input of a command be redirected from a
file. As the greater-than character > is used for output redirection, the less-than character < is used to redirect the
input of a command.

The commands that normally take their input from standard input can have their input redirected from a file in this
manner. For example, to count the number of lines in the file users generated above, you can execute the
command as follows:

$wc -lusers
2 users
$

Here it produces output 2 lines. You can count the number of lines in the file by redirecting the standard input of
the wc command from the file users:

$wc -1 < users
2
$

Note that there is a difference in the output produced by the two forms of the wc command. In the first case, the
name of the file users is listed with the line count; in the second case, it is not.

In the first case, wc knows that it is reading its input from the file users. In the second case, it only knows that it is
reading its input from standard input so it does not display file name.

| SNB 520dzySy iy
A here document is used to redirect input into an interactive shell script or program.

We can run an interactive program within a shell script without user action by supplying the required input for the
interactive program, or interactive shell script.

The general form for a here document is:

command << del imiter
document
delimiter

Here the shell interprets the << operator as an instruction to read input until it finds a line containing the specified
delimiter. All the input lines up to the line containing the delimiter are then fed into the standard input of the
command.

The delimiter tells the shell that the here document has completed. Without it, the shell continues to read input
forever. The delimiter must be a single word that does not contain spaces or tabs.

Following is the input to the command wc -l to count total number of line:

$wc -1 << EOF

TUTORIALS POINT
Simply Easy Learning

This is a simple lookup program
for good (and bad) restaurants
in Cape Town.

EOF

g

$

You can use here document to print multiple lines using your script as follows:

#1/bin/sh

cat << EOF

This is asimple loo kup program
for good (and bad) restaurants
in Cape Town.

EOF

This would produce following result:

This is a simple lookup program
for good (and bad) restaurants
in Cape Town.

The following script runs a session with the vi text editor and save the input in the file test.txt.
#!/bin/sh

filename =test . txt

vi $filename <<EndOfCommands

i

This file was created automatically from
a shell script

a

7z

EndOfCommands

If you run this script with vim acting as vi, then you will likely see output like the following:
$shtest .sh

Vim: Warning : Input is not from a terminal

$
After running the script, you should see the following added to the file test.txt:

$ cat test . txt

This file was created automatically from
a shell script
$

5A30F NR G(KS 2dziLlziyY

Sometimes you will need to execute a command, but you don't want the output displayed to the screen. In such
cases you can discard the output by redirecting it to the file /dev/null:

$ command > /dev/ null

TUTORIALS POINT
Simply Easy Learning

Here command is the name of the command you want to execute. The file /dev/null is a special file that
automatically discards all its input.

To discard both output of a command and its error output, use standard redirection to redirect STDERR to
STDOUT:

$ command > /dev/ null 2>&1

Here 2 represents STDERR and 1 represents STDOUT. You can display a message on to STDERR by
redirecting STDIN into STDERR as follows:

$ echo message 1>&2
WSRANBOUGAZ2Y [2YYlIYRAY

Following is the complete list of commands which you can use for redirection:

Command Description

pgm > file Output of pgm is redirected to file

pgm < file Program pgm reads its input from file.

pgm >> file Output of pgm is appended to file.

n > file Output from stream with descriptor n redirected to file.

n >> file Output from stream with descriptor n appended to file.

n>&m Merge output from stream n with stream m.

n<&m Merge input from stream n with stream m.

<< tag Standard input comes from here through next tag at start of line.

| Takes output from one program, or process, and sends it to another.

Note that file descriptor 0 is normally standard input (STDIN), 1 is standard output (STDOUT), and 2 is standard
error output (STDERR).

TUTORIALS POINT
Simply Easy Learning

Unix o Shell Functions

unctions enable you to break down the overall functionality of a script into smaller, logical subsections,

which can then be called upon to perform their individual task when it is needed.

Using functions to perform repetitive tasks is an excellent way to create code reuse. Code reuse is an important
part of modern object-oriented programming principles.

Shell functions are similar to subroutines, procedures, and functions in other programming languages.

I NBI GAy3 CdzyOGA2YAY
To declare a function, simply use the following syntax:

function_name () {
list of commands
}

The name of your function is function_name, and that's what you will use to call it from elsewhere in your scripts.
The function name must be followed by parentheses, which are followed by a list of commands enclosed within
braces.

Following is the simple example of using function:
#!/bin/sh
Define your function here

Hello () {
echo "Hello World"
}

Invoke your function
Hello

When you would execute above script it would produce following result:

$./ test .sh
Hello World
$

TUTORIALS POINT
Simply Easy Learning

tlaa tINYYSGSNAE (2 | CdzyOG)
You can define a function which would accept parameters while calling those function. These parameters would
be represented by $1, $2 and so on.

Following is an example where we pass two parameters Zara and Ali and then we capture and print these
parameters in the function.

#!/b in/sh
Define your function here

Hello () {
echo "Hello World $1 $2"
}

Invoke your function
Hello Zara Ali

This would produce following result:

$./ test .sh
Hello World Zara Al
$

WSUOd2NYAY 3 I fdzSa FNBY Cdzy Of

If you execute an exit command from inside a function, its effect is not only to terminate execution of the function
but also of the shell program that called the function.

If you instead want to just terminate execution of the function, then there is way to come out of a defined function.

Based on the situation you can return any value from your function using the return command whose syntax is as
follows:

return code

Here code can be anything you choose here, but obviously you should choose something that is meaningful or
useful in the context of your script as a whole.

OEI YLIX SY
Following function returns a value 1:
#!/bin/sh

Define your function here
Hello () {
echo "Hello World $1 $2"
return 10

}

Invoke your function
Hello Zzara Ali

Capture value returnd by last command
ret =$?

TUTORIALS POINT
Simply Easy Learning

echo "Return value is $ret"

This would produce following result:

$./ test .sh
Hello World Zara Al
Return value is 10

$

bSauSR CdzyOuAzyay
One of the more interesting features of functions is that they can call themselves as well as call other functions. A

function that calls itself is known as a recursive function.

Following simple example demonstrates a nesting of two functions:
#!/bin/sh

Calling one function from another
number_one () {
echo "This is the first function speaking..."
number_two

}

number_two () {
echo "This is now the second function speaking..."
}

Calling function one.
number_one

This would produce following result:

This is the first function speaking
This is now the second function speaking

Cdzy Ol A2y /it FNRBY tNRYLINY

You can put definitions for commonly used functions inside your .profile so that they'll be available whenever you
log in and you can use them at command prompt.

Alternatively, you can group the definitions in a file, say test.sh, and then execute the file in the current shell by
typing:

$. test .sh

This has the effect of causing any functions defined inside test.sh to be read in and defined to the current shell as
follows:

$ number_one

This is the first function speaking
This is now the second function speaking ...
$

To remove the definition of a function from the shell, you use the unset command with the .f option. This is the
same command you use to remove the definition of a variable to the shell.

$unset . f function_name

TUTORIALS POINT
Simply Easy Learning

TUTORIALS POINT
Simply Easy Learning

Unix - Manpage He Ip

Il the Unix commands come with a number of optional and mandatory options. It is very common to

forget complete syntax of these commands.

Because no one can possibly remember every Unix command and all its options, there has been online help
available since Unix's earliest days.

Unix's version of help files are called man pages . If you know any command name but you do not know how to
use it, then Man Pages are here to help you at every step.

Here is the simple command to get the detail of any Unix command while working with the system:

$man command

OEI YLX SY

Now you imagine any command for which you want to get help. Assuming you want to know about pwd then you
simply need to use the following command:

$man pwd

The above command would open a help for you which would give you complete information about pwd command.
Try it yourself at your command prompt to get more detail on

You can get complete detail on man command itself using the following command:
$man man

aly t+38 {80GA2yaY

Man pages are generally divided into sections, which generally vary by the man page author's preference. Here
are some of the more common sections:

Section Description

TUTORIALS POINT
Simply Easy Learning

NAME Name of the command

SYNOPSIS General usage parameters of the command.
DESCRIPTION Generally describes of the command and what it does
OPTIONS Describes all the arguments or options to the command

Lists other commands that are directly related to the command in the man page or closely

SEEALED resembling its functionality.

BUGS Explains any known issues or bugs that exist with the command or its output

EXAMPLES Common usage examples that give the reader an idea of how the command can be used.
AUTHORS The author of the man page/command.

So finally, 1 would say that man pages are a vital resource and the first avenue of research when you need
information about commands or files in a Unix system.

' ASTdAd {KSEff /2YYlIyYyRAaY

Now you know how to proceed, following link would give you a list of most important and very frequently used
Unix Shell commands.

If you do not know how to use any command then use man page to get complete detail about the command.

Here is the list of Unix Shell - Useful Commands

TUTORIALS POINT
Simply Easy Learning

http://www.tutorialspoint.com/unix/unix-useful-commands.htm

Unix - Regular Expres sions

regular expression is a string that can be used to describe several sequences of characters. Regular

expressions are used by several different Unix commands, including ed, sed, awk, grep, and, to a more limited
extent, vi.

This tutorial would teach you how to use regular expression along with sed.
Here sed stands for stream editor is a stream oriented editor which was created exclusively for executing scripts.
Thus all the input you feed into it passes through and goes to STDOUT and it does not change the input file.

LYy g21Ay3 &ASRY
Before we start, let us take make sure you have a local copy of /etc/passwd text file to work with sed.

As mentioned previously, sed can be invoked by sending data through a pipe to it as follows:

$cat /etc /passwd | sed
Usage: sed [OPTION... {script -other -script } [input -file]...

-n, -- quiet , -- silent
suppress automatic printing of pattern space
-escript |, -- expression =script

The cat command dumps the contents of /etc/passwd to sed through the pipe into sed's pattern space. The
pattern space is the internal work buffer that sed uses to do its work.

¢tKS aswetDwyidlEY
Following is the general syntax for sed
/pattern/ action

Here, pattern is a regular expression, and action is one of the commands given in the following table.
If pattern is omitted, action is performed for every line as we have seen above.

The slash characters (/) that surround the pattern are required because they are used as delimiters.
Range Description

p Prints the line

TUTORIALS POINT
Simply Easy Learning

d Deletes the line

s/patternl/pattern2/ Substitutes the first occurrence of patternl with pattern2.

58t SGAay3a 'ff [AySa 6A0K
Invoke sed again, but this time tell sed to use the editing command delete line, denoted by the single letter d:

$cat /etc /passwd | sed 'd'
$

Instead of invoking sed by sending a file to it through a pipe, you can instruct sed to read the data from a file, as
in the following example.

The following command does exactly the same thing as the previous Try It Out, without the cat command:

$sed -e 'd /etc /passwd
$

¢KS aSR ! RRNbaasSayY
Sed also understands something called addresses. Addresses are either particular locations in a file or a range

where a particular editing command should be applied. When sed encounters no addresses, it performs its
operations on every line in the file.

The following command adds a basic address to the sed command you've been using:

$cat /etc /passwd | sed ‘1d" | more
daemon: x: 1: 1: daemon: /usr/ sbin : /bin /sh
bin : x: 2: 2: bin : /bin:/ bin / sh

sys : X: 3: 3: sys : /dev:/ bin /sh

sync : x: 4: 65534 : sync : /bin:/ bin / sync
games: x: 5: 60: games: /usr/ games: /bin/ sh
man x: 6: 12: man /var/ cache / man /bin/ sh
mail : x: 8: 8: mail : /var/ mail :/bin/ sh

news: x: 9: 9: news: /var/ spool / news: /bin/ sh
backup : x: 34: 34: backup : /var/ backups : /bin/ sh
$

Notice that the number 1 is added before the delete edit command. This tells sed to perform the editing command
on the first line of the file. In this example, sed will delete the first line of /etc/password and print the rest of the file.

¢tKS 4SR ! RRNBaa wly3asay

So what if you want to remove more than one line from a file? You can specify an address range with sed as
follows:

$cat /etc/passwd | sed 'l,5d | more
games: x: 5: 60: games: /usr/ games: /bin/ sh

man: x: 6: 12: man /var/ cach e/ man /bin/ sh

mail : x: 8: 8: mail : /var/ mail :/bin/ sh

news: x: 9: 9: news: /var/ spool / news: /bin/ sh
backup : x: 34: 34: backup : /var/ backups : /bin/ sh
$

Above command would be applied on all the lines starting from 1 through 5. So it deleted first five lines.

TUTORIALS POINT
Simply Easy Learning

QX

(@p))

Try out the following address ranges:

Range Description
'4,10d"' Lines starting from 4th till 10th are deleted
'10,4d' Only 10th line is deleted, because sed does not work in reverse direction.
"4 +5d" This will match line 4 in the file, delete that line, continue to delete the next five lines, and then cease
’ its deletion and print the rest
'2,5!d' This will deleted everything except starting from 2nd till 5th line.
] 0 This deletes the first line, steps over the next three lines, and then deletes the fourth line. Sed
1~3d . : . ; ,
continues applying this pattern until the end of the file.
, , This tells sed to delete the second line, step over the next line, delete the next line, and repeat until
2~2d L
the end of the file is reached.
'4,10p' Lines starting from 4th till 10th are printed
'4,d' This would generate syntax error.
',10d' This would also generate syntax error.

Note: While using p action, you should use -n option to avoid repetition of line printing. Check the difference in
between following two commands:

$cat /etc/passwd | sed -n '1,3p
Check the above command without -n as follows:

$cat /etc /passwd | sed '1,3p'

¢KS {dzoaluAudziAzZzy [2YYlI YRY
The substitution command, denoted by s, will substitute any string that you specify with any other string that you
specify.

To substitute one string with another, you need to have some way of telling sed where your first string ends and

the substitution string begins. This is traditionally done by bookending the two strings with the forward slash (/)
character.

The following command substitutes the first occurrence on a line of the string root with the stringamrood .

$cat /etc /passwd | sed 's/root/amrood/
amrood : x: 0: O: root user :/root:/ bin / sh
daemon: x: 1: 1: daemon: /usr/ sbin : /bin/ sh

It is very important to note that sed substitutes only the first occurrence on a line. If the string root occurs more
than once on a line only the first match will be replaced.

To tell sed to do a global substitution, add the letter g to the end of the command as follows:
$cat /etc /passwd | sed 's/root/amrood/g’

amrood : x: 0: 0: amrood user :/amrood:/ bin / sh
daemon: x: 1: 1: daemon: /usr/ sbin : /bin/ sh

TUTORIALS POINT
Simply Easy Learning

bin : x: 2: 2: bin : /bin:/ bin / sh
sys : X: 3: 3: sys : /dev:/ bin /sh

[doadAlGdziAzy Ctl 3&Y

There are a number of other useful flags that can be passed in addition to the g flag, and you can specify more
than one at a time.

Flag Description
g Replace all matches, not just the first match.

NUMBER Replace only NUMBERth match.

p If substitution was made, print pattern space.
w - .
FILENAME If substitution was made, write result to FILENAME.
lori Match in a case-insensitive manner.
In addition to the normal behavior of the special regular expression characters ~ and $, this flag
M or m causes " to match the empty string after a newline and $ to match the empty string before a

newline.

CAAYI by EGSNYFGADS { GNRY:

You may find yourself having to do a substitution on a string that includes the forward slash character. In this
case, you can specify a different separator by providing the designated character after the s.

$cat /etc/passwd | sed 'si/root:/amrood:g’
amrood : x: 0: 0: amrood user :/amrood:/ bin / sh
daemon: x: 1: 1: daemon: /usr/ sbin : /bin/ sh

In the above example we have used : as delimeter instead of slash / because we were trying to search /root
instead of simple root.

wSLIE I OAy3a 6AGK 9ovYLIie { L) OS®
Use an empty substitution string to delete the root string from the /etc/passwd file entirely:

$cat /etc /passwd | sed 's/root//g’
:x:0:0:: [/ bin/sh
daemon: x: 1: 1: daemon: /usr/ sbin : /bin/ sh

. A v - v & L %
| RRNb{adzoauAudziAZ2YyY
If you want to substitute the string sh with the string quiet only on line 10, you can specify it as follows:
$cat /etc /passwd | sed '10s/sh/quiet/g'
root : x:0:0:rootuser :/root:/ bin /sh

daemon: x: 1: 1: daemon: /usr/ sbin : /bin/ sh
bin : x:2: 2: bin : /b in:/ bin /sh

TUTORIALS POINT
Simply Easy Learning

sys : x: 3: 3: sys : /dev:/ bin / sh

sync : X: 4: 65534 : sync : /bin:/ bin / sync

games: x: 5: 60: games: /usr/ games: /bin/ sh

man x: 6: 12: man /var/ cache / man /bin/ sh

mail : x: 8: 8: mail :/var/ mail :/bin/ sh

news: x: 9: 9: news: /var/ spool / news: /bin/ sh
backup : x: 34: 34: backup : /var/ backup s: /bin/ quiet

Similarly, to do an address range substitution, you could do something like the following:

$cat /etc/passwd | sed 'l,5s/sh/quiet/g’
root : x: 0: 0: rootuser :/root:/ bin / quiet
daemon: x: 1: 1. daemon: /usr/ sbin : /bin/ quiet
bin : x: 2: 2: bin : /bin:/ bin / quiet

sys: Xx: 3: 3:sys : /dev:/ bin / quiet

sync : x: 4: 65534 : sync : /bin:/ bin / sync
games: x: 5: 60: games: /usr/ games: /bin/ sh
man x: 6: 12: man /var/ cache / man /bin/ sh
mail : x: 8: 8: mail : /var/ mail :/bin/ sh

news: x: 9: 9: news: /var/ spool / news: /bin/ sh
backup : x: 34: 34: backup : /var/ backups : /bin/ sh

As you can see from the output, the first five lines had the string sh changed to quiet, but the rest of the lines were
left untouched.

¢KS al GOKAY3 /2YYIl YRY
You would use p option along with -n option to print all the matching lines as follows:

$cattes ting | sed -n ‘/root/p’

root : x: 0: 0: rootuser :/root:/ bin /sh

[root@ip -72-167-112-17 amrood | # vi testing
root : x:0:0:rootuser :/root:/ bin /sh
daemon: x: 1: 1: daemon: /usr/ shin : /bin/ sh
bin : x: 2: 2: bin : /bin:/ bin / sh

sys : x: 3: 3: sys : /dev:/ bin /sh

sync : x: 4: 65534 : sync : /bin:/ bin / sync
games: x: 5: 60: games: /usr/ games: /bin/ sh
man x: 6: 12: man /var/ cache / man /bin/ sh
mail : x: 8: 8: mail : /var/ mail :/bin/ sh

news: x: 9: 9: news: /var/ spool / news: /bin/ sh
backup : x: 34: 34: backup : /var/ backups : /bin/ sh

aAy3 wS3dzZ I NI 9ELINBaarzyy

While matching pattern, you can use regular expression which provides more flexibility.
Check following example which matches all the lines starting with daemon and then deleting them:

$ cat testing | sed ‘/daemon/d'

root : x: 0: 0: rootuser :/root:/ bin /sh

bin : x: 2: 2: bin : /bin:/ bin / sh

sys : x: 3: 3: sys : /dev:/ bin / sh

sync : x: 4: 65534 : sync : /bin:/ bin / sync
games: x: 5: 60: games: /usr/ games: /bin/ sh
man X: 6: 12: man /var/ cache / man: /bin/ sh
mail : x: 8: 8: mail : /var/ mail :/bin/ sh

news: x: 9: 9: news: /var/ spool / news: /bin/ sh

TUTORIALS POINT
Simply Easy Learning

backup : x: 34: 34: backup : /var/ backups : /bin/ sh
Following is the example which would delete all the lines ending with sh:

$ cat testing | sed ‘/sh$/d'
sync : X: 4: 65534 : sync : /bin:/ bin / sync

The following table lists four special characters that are very useful in regular expressions.

Character Description
N Matches the beginning of lines.
$ Matches the end of lines.

Matches any single character.
* Matches zero or more occurrences of the previous character

Matches any one of the characters given in chars, where chars is a sequence of characters. You
can use the - character to indicate a range of characters.

al OKAY 3 [/ KIFINY O0SNAY

Look at a few more expressions to demonstrate the use of the metacharacters. For example, the following
pattern:

[chars]

Expression Description

Jac/ Matches lines that contain strings such as a+c, a-c, abc, match, and a3c, whereas the
pattern

la*c/ Matches the same strings along with strings such as ace, yacc, and arctic.

[[tT]he/ Matches the string The and the:

g/ Matches Blank lines

nx*$l Matches an entire line whatever it is.

[* Matches one or more spaces

~$/ Matches Blank lines

Following table shows some frequently used sets of characters:

Set Description

[a-2] Matches a single lowercase letter
[A-Z] Matches a single uppercase letter
[a-zA-Z] Matches a single letter

TUTORIALS POINT
Simply Easy Learning

[0-9] Matches a single number

[a-zA-Z0-9] Matches a single letter or number

/| KIF N}y OGSNJ/ fl aa YSeéeg2NRAY

Some special keywords are commonly available to regexps, especially GNU utilities that employ regexps. These
are very useful for sed regular expressions as they simplify things and enhance readability.

For example, the characters a through z as well as the characters A through Z constitute one such class of
characters that has the keyword [[:alpha:]]

Using the alphabet character class keyword, this command prints only those lines in the /etc/syslog.conf file that
start with a letter of the alphabet:

$cat /etc /syslog .conf | sed -n ‘/A[[:alpha:]]/p’

authpriv. .* / var / log / secure
mail .* - Ivar/ log / maillog
cr on.* / var /[log / cron
uucp , news. crit / var / log / spooler
local7 .* / var / log / boot . log

The following table is a complete list of the available character class keywords in GNU sed.

Character C lass Description

[[:alnum:]] Alphanumeric [a-z A-Z 0-9]

[[:alpha:]] Alphabetic [a-z A-Z]

[[:blank:]] Blank characters (spaces or tabs)

[:entrl:]] Control characters

[[:digit:]] Numbers [0-9]

[[:graph:]] Any visible characters (excludes whitespace)
[[:lower:]] Lowercase letters [a-z]

[[:print:]] Printable characters (noncontrol characters)
[[:punct:]] Punctuation characters

[[:space:]] Whitespace

[[:upper:]] Uppercase letters [A-Z]

[[:xdigit:]] Hex digits [0-9 a-f A-F]

' YLISNEF YR wSTSNBYOAYy3Y

The sed metacharacter & represents the contents of the pattern that was matched. For instance, say you have a
file called phone.txt full of phone numbers, such as the following:

TUTORIALS POINT
Simply Easy Learning

5555551212
5555551213
5555551214
6665551215
6665551216
7775551217

You want to make the area code (the first three digits) surrounded by parentheses for easier reading. To do this,
you can use the ampersand replacement character, like so:

$sed -e 's/M[digit]][:digit:]][:digit:]]//(&)/g’ phone . txt
(555) 5551212
(555) 5551213
(555) 5551214
(666) 5551215
(666) 5551216
(777) 5551217

Here in pattern part you are matching first 3 digits and then using & you are replacing those 3 digits with
surrounding parentheses.

aAy3 adAZ GALIES &aSR [/ 2YYIl yR:
You can use multiple sed commands in a single sed command as follows:

$sed -e 'commandl’ -e ‘command2’ .. -e '‘commandN' files

Here commandl through commandN are sed commands of the type discussed previously. These commands are
applied to each of the lines in the list of files given by files.

Using the same mechanism, we can write above phone number example as follows:

$sed -e 's/[:digit]] \ {3\ Y(&)/g' \
- e 's/)[[:digit:]] \{3\}/& -/g° phone. txt
(555) 555- 1212
(555) 555- 1213
(555) 555- 1214
(666) 555- 1215
(666) 555- 1216
(777)555- 1217

Note: In the above example, instead of repeating the character class keyword [[:digit:]] three times, you replaced
it with \{3\}, which means to match the preceding regular expression three times. Here | used \ to give line break
you should remove this before running this command.

.01 wSTSNByOSay
The ampersand metacharacter is useful, but even more useful is the ability to define specific regions in a regular

expressions so you can reference them in your replacement strings. By defining specific parts of a regular
expression, you can then refer back to those parts with a special reference character.

To do back references, you have to first define a region and then refer back to that region. To define a region you
insert backslashed parentheses around each region of interest. The first region that you surround with
backslashes is then referenced by \1, the second region by \2, and so on.

Assuming phone.txt has the following text:

(555) 555- 1212

TUTORIALS POINT
Simply Easy Learning

(555) 555- 1213
(555) 555- 1214
(666) 555- 1215
(666) 555- 1216
(777)555- 1217

Now try the following command:

$catphone .txt | sed 's/ \(*) \)\(* -\)\(* \)Area \
code: \1Second: \2Third: \ 3/

Area code: (555) Second: 555- Third : 1212

Area code: (555) Second: 555- Third : 1213

Area code: (555) Second: 555- Third : 1214

Area code: (666) Second: 555- Third : 1215

Area code: (666) Second: 555- Third : 1216

Area code: (777) Second: 555- Third : 1217

Note: In the above example each regular expression inside the parenthesis would be back referenced by \1, \2
and so on. Here | used \ to give line break you should remove this before running this command.

TUTORIALS POINT
Simply Easy Learning

Unix 0O File System Basics

file system is a logical collection of files on a partition or disk. A partition is a container for information

and can span an entire hard drive if desired.

Your hard drive can have various partitions which usually contains only one file system, such as one file system
housing the / file system or another containing the /home file system.

One file system per partition allows for the logical maintenance and management of differing file systems.

Everything in Unix is considered to be a file, including physical devices such as DVD-ROMs, USB devices, floppy
drives, and so forth.

5ANBOG2NE { 04NHz2OG dzZNBY

Unix uses a hierarchical file system structure, much like an upside-down tree, with root (/) at the base of the file
system and all other directories spreading from there.

A UNIX filesystem is a collection of files and directories that has the following properties:

T It has a root directory (/) that contains other files and directories.

T Each file or directory is uniquely identified by its name, the directory in which it resides, and a unique
identifier, typically called an inode.

T By convention, the root directory has an inode number of 2 and the lost+found directory has an inode
number of 3. Inode numbers 0 and 1 are not used. File inode numbers can be seen by specifying the -i
option to Is command.

T It is self contained. There are no dependencies between one filesystem and any other.

The directories have specific purposes and generally hold the same types of information for easily locating files.
Following are the directories that exist on the major versions of Unix:

Directory Description

This is the root directory which should contain only the directories needed at the top level of

/ the file structure.

/bin This is where the executable files are located. They are available to all user.

TUTORIALS POINT
Simply Easy Learning

/dev These are device drivers.

Supervisor directory commands, configuration files, disk configuration files, valid user lists,

ST groups, ethernet, hosts, where to send critical messages.

/lib Contains shared library files and sometimes other kernel-related files.

/boot Contains files for booting the system.

/home Contains the home directory for users and other accounts.

/mnt Used to mount other temporary file systems, such as cdrom and floppy for the CD-ROM drive
and floppy diskette drive, respectively

Joroc Contains all processes marked as a file by process number or other information that is

P dynamic to the system.

/tmp Holds temporary files used between system boots

/ Used for miscellaneous purposes, or can be used by many users. Includes administrative

usr f ; X
commands, shared files, library files, and others

war Typically contains variable-length files such as log and print files and any other type of file
that may contain a variable amount of data

. Contains binary (executable) files, usually for system administration. For

/sbin . : ; A
examplefdisk and ifconfig utlities.

/kernel Contains kernel files

bl GAIFGAYT GKS CAES {eai

Now that you understand the basics of the file system, you can begin navigating to the files you need. The
following are commands you'll use to navigate the system:

Command Description

cat filename Displays a filename.

cd dirname Moves you to the directory identified.

cp filel file2 Copies one file/directory to specified location.
file filename Identifies the file type (binary, text, etc).

find filename dir Finds a file/directory.

head filename Shows the beginning of a file.

less filename Browses through a file from end or beginning.
Is dirname Shows the contents of the directory specified.
mkdir dirname Creates the specified directory.

more filename Browses through a file from beginning to end.
myv filel file2 Moves the location of or renames a file/directory.
pwd Shows the current directory the user is in.

rm filename Removes a file.

rmdir dirname Removes a directory.

TUTORIALS POINT
Simply Easy Learning

S Y)Y

tail filename Shows the end of a file.

touch filename Creates a blank file or modifies an existing file.s attributes.
whereis filename Shows the location of a file.
which filename Shows the location of a file if it is in your PATH.

You can use Manpage Help to check complete syntax for each command mentioned here.

¢tKS RF¥ /2YYlI YyRY

The first way to manage your partition space is with the df (disk free) command. The command df -k (disk free)
displays the disk space usage in kilobytes, as shown below:

$df -k

Filesystem 1K- blocks Used Available Use% Mounted on
/ dev/ vzfs 10485760 7836644 2649116 75%/

/ devices 0 0 0 0%/ devices

$

Some of the directories, such as /devices, shows 0 in the kbytes, used, and avail columns as well as 0% for
capacity. These are special (or virtual) file systems, and although they reside on the disk under /, by themselves
they do not take up disk space.

The df -k output is generally the same on all Unix systems. Here's what it usually includes:

Column Description

Filesystem The physical file system name.

Kbytes Total kilobytes of space available on the storage medium.
Used Total kilobytes of space used (by files).

Avall Total kilobytes available for use.

Capacity Percentage of total space used by files.

Mounted on What the file system is mounted on.

You can use the -h (human readable) option to display the output in a format that shows the size in easier-to-
understand notation.

¢KS Rdz / 2YYl yYRY

The du (disk usage) command enables you to specify directories to show disk space usage on a particular
directory.

This command is helpful if you want to determine how much space a particular directory is taking. Following
command would display number of blocks consumed by each directory. A single block may take either 512 Bytes
or 1 Kilo Byte depending on your system.

$du / etc

10 / etc /cron .d
126 | etc / default
6 / etc / dfs

$

The -h option makes the output easier to comprehend:

TUTORIALS POINT
Simply Easy Learning

http://www.tutorialspoint.com/unix/unix-manpage-help.htm

$du -h /etc

5k / etc / cron . d
63k / etc / defau It
3k / etc / dfs

.
a2dzyGAy3a 0KS CAfS {&adsSyy

A file system must be mounted in order to be usable by the system. To see what is currently mounted (available
for use) on your system, use this command:

$ mount

/dev/vzfson / type reiserfs (rw, usrquota , gr pquota)
proc on / proc type proc (rw, nodiratime)

devptson /dev/ pts type devpts (rw)

$

The /mnt directory, by Unix convention, is where temporary mounts (such as CD-ROM drives, remote network
drives, and floppy drives) are located. If you need to mount a file system, you can use the mount command with
the following syntax:

mount -t file_system_type device_to_mount directory_to_mount_to

For example, if you want to mount a CD-ROM to the directory /mnt/cdrom, for example, you can type:
$ mount - tis09660 / dev/ cdrom / mnt/ cdrom

This assumes that your CD-ROM device is called /dev/cdrom and that you want to mount it to /mnt/cdrom. Refer
to the mount man page for more specific information or type mount -h at the command line for help information.

After mounting, you can use the cd command to navigate the newly available file system through the mountpoint
you just made.

LyY2dzyUAy3d GKS CAfS {@ausvy

To unmount (remove) the file system from your system, use the umount command by identifying the mountpoint
or device

For example, to unmount cdrom, use the following command:
$ umount / dev/ cdrom

The mount command enables you to access your file systems, but on most modern Unix systems, the automount
function makes this process invisible to the user and requires no intervention.

' ASNJ YR DNRdzL) vdz2 (Gl ay

User and group quotas provide the mechanisms by which the amount of space used by a single user or all users
within a specific group can be limited to a value defined by the administrator.

Quotas operate around two limits that allow the user to take some action if the amount of space or number of disk
blocks start to exceed the administrator defined limits:

Soft Limit: If the user exceeds the limit defined, there is a grace period that allows the user to free up some
space.

Hard Lim it: When the hard limit is reached, regardless of the grace period, no further files or blocks can be
allocated.

TUTORIALS POINT
Simply Easy Learning

There are a number of commands to administer quotas:

Command
guota
edquota
quotacheck

setquota

quotaon

quotaoff

repquota

Description

Displays disk usage and limits for a user of group.

This is a quota editor. Users or Groups quota can be edited using this command.
Scan a filesystem for disk usage, create, check and repair quota files

This is also a command line quota editor.

This announces to the system that disk quotas should be enabled on one or
more filesystems.

This announces to the system that disk quotas should be disabled off one or
more filesystems.

This prints a summary of the disc usage and quotas for the specified file systems

You can use Manpage Help to check complete syntax for each command mentioned here.

TUTORIALS POINT
Simply Easy Learning

http://www.tutorialspoint.com/unix/unix-manpage-help.htm

Unix o User Administration

here are three types of accounts on a Unix system:

1. Root account: This is also called superuser and would have complete and unfettered control of the system.
A superuser can run any commands without any restriction. This user should be assumed as a system
administrator.

2. System account s: System accounts are those needed for the operation of system-specific components for
example mail accounts and the sshd accounts. These accounts are usually needed for some specific function
on your system, and any modifications to them could adversely affect the system.

3. User accounts: User accounts provide interactive access to the system for users and groups of users.
General users are typically assigned to these accounts and usually have limited access to critical system files
and directories.

Unix supports a concept of Group Account which logically groups a number of accounts. Every account would be

a part of any group account. Unix groups plays important role in handling file permissions and process

management.

al yFr3Ay3 ! aSN&E yR DNRdzLJAY

1. J/etc/passwd: Keeps user account and password information. This file holds the majority of information about
accounts on the Unix system.

2. [etc/shadow: Holds the encrypted password of the corresponding account. Not all the system support this
file.

3. /etc/group: This file contains the group information for each account.

4. [etc/gshadow: This file contains secure group account information.

Check all the above files using cat command.

Following are commands available on the majority of Unix systems to create and manage accounts and groups:

Command Description

useradd Adds accounts to the system.
usermod Modifies account attributes.
userdel Deletes accounts from the system.
groupadd Adds groups to the system.

TUTORIALS POINT
Simply Easy Learning

groupmod Modifies group attributes.
groupdel Removes groups from the system.
You can use Manpage Help to check complete syntax for each command mentioned here.

/| NBIFGS | DN dzLJ

You would need to create groups before creating any account otherwise you would have to use existing groups at
your system. You would have all the groups listed in /etc/groups file.

All the default groups would be system account specific groups and it is not recommended to use them for
ordinary accounts. So following is the syntax to create a new group account:

groupadd [-ggid [-0]] [-r] [-f] groupname

Here is the detail of the parameters:

Option Description

-g GID The numerical value of the group's ID.

-0 This option permits to add group with non-unique GID
-r This flag instructs groupadd to add a system account

This option causes to just exit with success status if the specified group already exists. With -
g, if specified GID already exists, other (unique) GID is chosen

Groupname Actaul group name to be created.

If you do not specify any parameter then system would use default values.

Following example would create developers group with default values, which is very much acceptable for most of
the administrators.

$ grou padd developers

az2zRATE& | DN dzLIY

To modify a group, use the groupmod syntax:

$ groupmod - n new_modified_group_name old_group_name
To change the developers_2 group name to developer, type:

$ groupmod - n developer developer_2

Here is how you would change the financial GID to 545:

$ groupmod -g 545 developer

5StSGS | DN dzLJY

To delete an existing group, all you need are the groupdel command and the group name. To delete the financial
group, the command is:

TUTORIALS POINT
Simply Easy Learning

http://www.tutorialspoint.com/unix/unix-manpage-help.htm

$ groupdel developer

This removes only the group, not any files associated with that group. The files are still accessible by their
owners.

A Vd A A A v
I NBFEGS Fy 1 002dzy
Let us see how to create a new account on your Unix system. Following is the syntax to create a user's account:
useradd -dhomedir -ggroupname -m -sshel | -u useridaccountname

Here is the detail of the parameters:

Option Description

-d homedir Specifies home directory for the account.

-g groupname Specifies a group account for this account.
-m Creates the home directory if it doesn't exist.
-s shell Specifies the default shell for this account.
-u userid You can specify a user id for this account.
Accountname Actual account name to be created

If you do not specify any parameter then system would use default values. The useradd command modifies the
letc/passwd, /etc/shadow, and /etc/group files and creates a home directory.

Following is the example which would create an account mcmohd setting its home directory to/home/mcmohd and
group as developers. This user would have Korn Shell assigned to it.

$u seradd -d /home mcmohd - g developers -s / bin / ksh mcmohd

Before issuing above command, make sure you already have developers group created
usinggroupadd command.

Once an account is created you can set its password using the passwd command as follows:

$ pass wd mcmohd20

Changing password for user mcmohd20 .

New UNIX password

Retype new UNIX password

passwd : all authentication tokens updated successfully

When you type passwd accountname, it gives you option to change the password provided you are super user
otherwise you would be able to change just your password using the same command but without specifying your
account name.

hd o o Vd
N\ L]
a2zRATEe Iy 1| O002dzyiyY
The usermod command enables you to make changes to an existing account from the command line. It uses the
same arguments as the useradd command, plus the -l argument, which allows you to change the account name.

For example, to change the account name mcmohd to mcmohd20 and to change home directory accordingly, you
would need to issue following command:

TUTORIALS POINT
Simply Easy Learning

$usermod -d /home& mcmohd20 - m - | mcmohd mcmohd20

58t SGS Iy ! 002dzyiyY
The userdel command can be used to delete an existing user. This is a very dangerous command if not used

with caution.

There is only one argument or option available for the command: .r, for removing the account's home directory
and mail file.

For example, to remove account mcmohd20, you would need to issue following command:

$ userdel - r mcmohd20

If you want to keep her home directory for backup purposes, omit the -r option. You can remove the home
directory as needed at a later time.

TUTORIALS POINT
Simply Easy Learning

Unix 0 System Performance

he purpose of this tutorial is to introduce the performance analyst to some of the free tools available to

monitor and manage performance on UNIX systems, and to provide a guideline on how to diagnose and fix
performance problems in Unix environment.

UNIX has following major resource types that need to be monitored and tuned:

T CPU

q Memory

T Disk space

T Communications lines
T I/O Time

q Network Time

9 Applications programs
t

A N A7 A .{

SNF 2 MRNWLRS SY U a
There are following major five component where total system time goes:
Component Description

The actual amount of time the CPU spends running the users program in the user
User state CPU state. It includes time spent executing library calls, but does not include time spent
in the kernel on its behalf.

This is the amount of time the CPU spends in the system state on behalf of this
System state CPU program. All /O routines require kernel services. The programmer can affect this
value by the use of blocking for I/O transfers.

!I/'?nl:lme 7 NS These are the amount of time spent moving data and servicing 1/O requests
Virtual Memory

Performance This includes context switching and swapping.

Time spent running other programs - when the system is not servicing this

Al [PragE application because another application currently has the CPU.

TUTORIALS POINT
Simply Easy Learning

t SNF 2 NERY @Y

Unix provides following important tools to measure and fine tune Unix system performance:

Command Description

nice/renice Run a program with modified scheduling priority

Netstat Print neywork connecti.ons, routing tabl_es, interface statistics, masquerade
connections, and multicast memberships

Time Time a simple command or give resource usage

Uptime System Load Average

Ps Report a snapshot of the current processes.

Vmestat Report virtual memory statistics

Gprof Display call graph profile data

Prof Process Profiling

Top Display system tasks

You can use Manpage Help to check complete syntax for each command mentioned here.

TUTORIALS POINT
Simply Easy Learning

http://www.tutorialspoint.com/unix/unix-manpage-help.htm

Unix 0 System Logging

nix systems have a very flexible and powerful logging system, which enables you to record almost

anything you can imagine and then manipulate the logs to retrieve the information you require.

Many versions of UNIX provide a general-purpose logging facility called syslog. Individual programs that need to
have information logged send the information to syslog.

Unix syslog is a host-configurable, uniform system logging facility. The system uses a centralized system logging
process that runs the program /etc/syslogd or /etc/syslog .

The operation of the system logger is quite straightforward. Programs send their log entries to syslogd, which
consults the configuration file /etc/syslogd.conf or /etc/syslog and, when a match is found, writes the log message
to the desired log file.

There are four basic syslog terms that you should understand:
Term Description

Facilit The identifier used to describe the application or process that submitted the log message.
y Examples are mail, kernel, and ftp.
Priorit An indicator of the importance of the message. Levels are defined within syslog as guidelines,
Y from debugging information to critical events.
Selector A combination of one or more facilities and levels. When an incoming event matches a selector,
an action is performed.
What happens to an incoming message that matches a selector. Actions can write the message
Action to a log file, echo the message to a console or other device, write the message to a logged in
user, or send the message along to another syslog server.

{feaft23 CIFOAtAUASAY

Here are the available facilities for the selector. Not all facilities are present on all versions of UNIX.

Facility Description
auth Activity related to requesting name and password (getty, su, login)
authpriv Same as auth but logged to a file that can only be read by selected users

TUTORIALS POINT
Simply Easy Learning

Used to capture messages that would generally be directed to the system

console console

cron Messages from the cron system scheduler
daemon System daemon catch-all

ftp Messages relating to the ftp daemon

kern Kernel messages

localO.local7 Local facilities defined per site

Ipr Messages from the line printing system

mail Messages relating to the mail system

mark Pseudo event used to generate timestamps in log files
news Messages relating to network news protocol (nntp)
ntp Messages relating to network time protocol

user Regular user processes

uucp UUCP subsystem

{feaf23 tNAZ2NRUOASAY

The syslog priorities are summarized in the following table:

Priority Description
Emer Emergency condition, such as an imminent system crash, usually broadcast
9 to all users

Alert Condition that should be corrected immediately, such as a corrupted system
database

Crit Critical condition, such as a hardware error

Err Ordinary error

Warning Warning

Notice Condition that is not an error, but possibly should be handled in a special
way

Info Informational message

Debug Messages that are used when debugging programs

None Pseudo level used to specify not to log messages.

TUTORIALS POINT
Simply Easy Learning

The combination of facilities and levels enables you to be discerning about what is logged and where that
information goes.

As each program sends its messages dutifully to the system logger, the logger makes decisions on what to keep
track of and what to discard based on the levels defined in the selector.

When you specify a level, the system will keep track of everything at that level and higher.

¢

KS kSiOkaeat23p02yF TFAft

The /etc/syslog.conf file controls where messages are logged. A typical syslog.conf file might look like this:

*.err ; kern . debug ; auth . notice / dev/ console

daemon, auth . notice / var / log / messages
Ipr . info /var /'log / lpr . log

mail .* /var /log /mail .lo g
ftp .* /var /'log / ftp . log

auth .* @prep. ai . mit . edu
auth .* root , amrood

netinfo . err / var / log / netinfo . log
install .* /var /log /install . log
*. emerg *

*. alert | program_name

mark .* / dev/ console

Each line of the file contains two parts:

f

A message selector that specifies which kind of messages to log. For example, all error messages or all
debugging messages from the kernel.

An action field that says what should be done with the message. For example, put it in a file or send the
message to a user's terminal.

Following are the notable points for the above configuration:

1

The

Message selectors have two parts: a facility and a priority. For example, kern.debug selects all debug
messages (the priority) generated by the kernel (the facility).

Message selectetor kern.debug selects all priorities that are greater than debug.

An asterisk in place of either the facility or the priority indicates "all." For example, *.debug means all debug
messages, while kern.* means all messages generated by the kernel.

You can also use commas to specify multiple facilities. Two or more selectors can be grouped together by
using a semicolon.

233Ay3 ! OGAZ2yay

action field specifies one of five actions:
Log message to a file or a device. For example, /var/log/lpr.log or /dev/console.

Send a message to a user. You can specify multiple usernames by separating them with commas (e.g., root,
amrood).

Send a message to all users. In this case, the action field consists of an asterisk (e.qg., *).
Pipe the message to a program. In this case, the program is specified after the UNIX pipe symbol (|).

Send the message to the syslog on another host. In this case, the action field consists of a hostname,
preceded by an at sign (e.g., @tutorialspoint.com)

TUTORIALS POINT
Simply Easy Learning

(@p))

¢KS f233ISNI/ 2YYIlYyRY

UNIX provides the logger command, which is an extremely useful command to deal with system logging.
The logger command sends logging messages to the syslogd daemon, and consequently provokes system

logging.
This means we can check from the command line at any time the syslogd daemon and its configuration. The
logger command provides a method for adding one-line entries to the system log file from the command line.

The format of the command is:

logger [-i] [-ffile] [-p priority] [-ttag]| [message]...
Here is the detail of the parameters:

Option Description

-f filename Use the contents of file filename as the message to log.

-i Log the process ID of the logger process with each line.

Enter the message with the specified priority (specified selector entry); the message priority can

P priority be specified numerically, or as a facility.priority pair. The default priority is user.notice.
-t tag Mark each line added to the log with the specified tag.
message The string arguments whose contents are concatenated together in the specified order, separated

by the space

You can use Manpage Help to check complete syntax for this command.

[23 w20l 0A2YY

Log files have the propensity to grow very fast and consume large amounts of disk space. To enable log
rotations, most distributions use tools such as newsyslog or logrotate.

These tools should be called on a frequent time interval using the cron daemon. Check the man pages
for newsyslog or logrotate for more details.

LYLRNIOFYOG [23 [20FGA2Ya

All the system applications create their log files in /var/log and its sub-directories. Here are few important
applications and their coressponding log directories:

Application Directory

Httpd Ivar/log/httpd
Samba Ivar/log/samba
Cron Ivarllog/

Malil Ivarllog/

Mysql Ivar/log/

TUTORIALS POINT
Simply Easy Learning

http://www.tutorialspoint.com/unix/unix-manpage-help.htm

Unix 0 Signals and Traps

nals are software interrupts sent to a program to indicate that an important event has occurred. The

events can vary from user requests to illegal memory access errors. Some signals, such as the interrupt signal,
indicate that a user has asked the program to do something that is not in the usual flow of control.

The following are some of the more common signals you might encounter and want to use in your programs:

Signal Name ﬁil?rr;%ler Description

SIGHUP 1 Hang up detected on controlling terminal or death of controlling process

SIGINT 2 Issued if the user sends an interrupt signal (Ctrl + C).

SIGQUIT 3 Issued if the user sends a quit signal (Ctrl + D).

SIGFPE 8 Issued if an illegal mathematical operation is attempted

SIGKILL 9 If a process gets this signal it must quit immediately and will not perform any
clean-up operations

SIGALRM 14 Alarm Clock signal (used for timers)

SIGTERM 15 Software termination signal (sent by kill by default).

[A&d0G 2F {A3JylLtay

There is an easy way to list down all the signals supported by your system. Just issue kill - command and it
would display all the supported signals:

kil -1

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL

5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE
9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2
13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGSTKFLT
17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU
25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH
29) SIGIO 30) SIGPWR 31) SIGSYS 34) SIGRTMIN

35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3 38) SIGRTMIN+4

TUTORIALS POINT
Simply Easy Learning

39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8
43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12
47) SIGRTMIN+13 48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX14
51) SIGRTMAX13 52) SIGRTMAX12 53) SIGRTMAX1l1 54) SIGRTMAX10
55) SIGRTMAX9 56) SIGRTMAX8 57) SIGRTMAX7 58) SIGRTMAXG6
59) SIGRTMAX5 60) SIGRTMAX4 61) SIGRTMAX3 62) SIGRTMAX2
63) SIGRTMAX1 64) SIGRTMAX

The actual list of signals varies between Solaris, HP-UX, and Linux.
58FldA G ! QlAaz2yay

Every signal has a default action associated with it. The default action for a signal is the action that a script or
program performs when it receives a signal.

Some of the possible default actions are:

Terminate the process.
9 Ignore the signal.

9 Dump core. This creates a file called core containing the memory image of the process when it received the
signal.

9 Stop the process.

Continue a stopped process.
{syRAya [ATIYIEAY

There are several methods of delivering signals to a program or script. One of the most common is for a user to
type CONTROL-C or the INTERRUPT key while a script is executing.

When you press the Ctrl+C key a SIGINT is sent to the script and as per defined default action script terminates.

The other common method for delivering signals is to use the kill command whose syntax is as follows:
$ kill - signal pid

Here signal is either the number or name of the signal to deliver and pid is the process ID that the signal should
be sent to. For Example:

$ kill -1 1001

Sends the HUP or hang-up signal to the program that is running with process ID 1001. To send a kill signal to the
same process use the following command:

$ kill -9 1001

This would kill the process running with process ID 1001.

¢NJ LILIAY3I {ATyLfay

When you press the Ctrl+C or Break key at your terminal during execution of a shell program, normally that
program is immediately terminated, and your command prompt returned. This may not always be desirable. For
instance, you may end up leaving a bunch of temporary files that won't get cleaned up.

TUTORIALS POINT
Simply Easy Learning

Trapping these signals is quite easy, and the trap command has the following syntax:
$ trap commands signals

Here command can be any valid Unix command, or even a user-defined function, and signal can be a list of any
number of signals you want to trap.

There are three common uses for trap in shell scripts:
1. Clean up temporary files

2. Ignore signals

/] T SFYAYy3 LI ¢SYLR2NINE CAf S:

As an example of the trap command, the following shows how you can remove some files and then exit if
someone tries to abort the program from the terminal:

$trap "rm -f$WORKDIR/work1$$ SWORKDIR/dataout$$; exit" 2

From the point in the shell program that this trap is executed, the two files work1$$ and dataout$$ will be
automatically removed if signal number 2 is received by the program.

So if the user interrupts execution of the program after this trap is executed, you can be assured that these two
files will be cleaned up. The exit command that follows the rm is necessary because without it execution would
continue in the program at the point that it left off when the signal was received.

Signal number 1 is generated for hangup: Either someone intentionally hangs up the line or the line gets
accidentally disconnected.

You can modify the preceding trap to also remove the two specified files in this case by adding signal number 1 to
the list of signals:

$trap "rm $WORKDIR/work1$$ $WORKDIR/dataout$$; exit" 12

Now these files will be removed if the line gets hung up or if the Ctrl+C key gets pressed.

The commands specified to trap must be enclosed in quotes if they contain more than one command. Also note
that the shell scans the command line at the time that the trap command gets executed and also again when one
of the listed signals is received.

So in the preceding example, the value of WORKDIR and $$ will be substituted at the time that the trap command
is executed. If you wanted this substitution to occur at the time that either signal 1 or 2 was received you can put

the commands inside single quotes:

$trap 'rm $WORKDIR/work1$$ $WORKDIR/dataout$s$; exit' 12

LIy2NAYy 3 {AIylfay

If the command listed for trap is null, the specified signal will be ignored when received. For example, the
command:

$trap " 2

Specifies that the interrupt signal is to be ignored. You might want to ignore certain signals when performing some
operation that you don't want interrupted. You can specify multiple signals to be ignored as follows:

TUTORIALS POINT
Simply Easy Learning

$trap ' 1 2 3 15

Note that the first argument must be specified for a signal to be ignored and is not equivalent to writing the
following, which has a separate meaning of its own:

$ trap 2

If you ignore a signal, all subshells also ignore that signal. However, if you specify an action to be taken on receipt
of a signal, all subshells will still take the default action on receipt of that signal.

wSaSldAy3a ¢NF LAY

After you've changed the default action to be taken on receipt of a signal, you can change it back again with trap if
you simply omit the first argument; so

$trap 1 2

resets the action to be taken on receipt of signals 1 or 2 back to the default.

TUTORIALS POINT
Simply Easy Learning

Unix o Useful Commands

his quick guide lists commands, including a syntax and brief description. For more detail, use:

$man command

CAf Sa

YR 5ANBOUZ2ZNRASAY

These commands allow you to create directories and handle files.

Command
Cat

Cd
Chgrp
Chmod
Cp

File
Find
Grep
Head
Ln

Ls
Mkdir
More

Mv

Description

Display File Contents

Changes Directory to dirname
change file group

Changing Permissions

Copy source file into destination
Determine file type

Find files

Search files for regular expressions.
Display first few lines of a file
Create softlink on oldname
Display information about file type.
Create a new directory dirname
Display data in paginated form.

Move (Rename) a oldname to newname.

TUTORIALS POINT
Simply Easy Learning

Pwd Print current working directory.

Rm Remove (Delete) filename

Rmdir Delete an existing directory provided it is empty.
Tall Prints last few lines in a file.

Touch Update access and modification time of a file.

al YALMZ I GAy3 RFEOGFY

The contents of files can be compared and altered with the following commands.

Command Description

Awk Pattern scanning and processing language
Cmp Compare the contents of two files

Comm. Compare sorted data

Cut Cut out selected fields of each line of a file
Diff Differential file comparator

Expand Expand tabs to spaces

Join Join files on some common field

Perl Data manipulation language

Sed Stream text editor

Sort Sort file data

Split Split file into smaller files

Tr Translate characters

Uniq Report repeated lines in a file

Wc Count words, lines, and characters

Vi Opens vi text editor

Vim Opens vim text editor

Fmt Simple text formatter

Spell Check text for spelling error

Ispell Check text for spelling error

TUTORIALS POINT
Simply Easy Learning

Ispell

Emacs
ex, edit
Emacs

Emacs

/| 2YLINB & a

Check text for spelling error
GNU project Emacs

Line editor

GNU project Emacs

GNU project Emacs

SR CAfSay

Files may be compressed to save space. Compressed files can be created and examined.

Command
compress
Gunzip

Gzip
uncompress
Unzip

Zcat

Zcmp

Zdiff

Zmore

DSUOUGAY 3

Description

Compress files

Uncompress gzipped files

GNU alternative compression method

Uncompress files

List, test and extract compressed files in a ZIP archive
Cat a compressed file

Compare compressed files

Compare compressed files

File perusal filter for crt viewing of compressed text

LYF2NXYIFOGAZ2YY

Various Unix manuals and documentation are available on-line. The following Shell commands give information:

Command
apropos
Info

Man
Whatis

Yelp

Description

Locate commands by keyword lookup

Displays command information pages online
Displays manual pages online

Search the whatis database for complete words.

GNOME help viewer

TUTORIALS POINT
Simply Easy Learning

bSiU62N) OF20YAY2dgyYA

These following commands are used to send and receive files from a local UNIX hosts to the remote host around
the world.

Command Description

ftp File transfer program

Rcp Remote file copy

rlogin Remote login to a UNIX host

Rsh Remote shell

Titp Trivial file transfer program

telnet Make terminal connection to another host
Ssh Secure shell terminal or command connection
Scp Secure shell remote file copy

Sftp secure shell file transfer program

Some of these commands may be restricted at your computer for security reasons.
aSaal3sSa o0SGsSSy ! ASNAY

The UNIX systems support on-screen messages to other users and world-wide electronic mail:

Command Description

evolution GUI mail handling tool on Linux
Malil Simple send or read mail program
Mesg Permit or deny messages

Parcel Send files to another user

Pine Vdu-based mail utility

Talk Talk to another user

Write Write message to another user

t N2INF YYAYT ! GAfAOASAY

The following programming tools and languages are available based on what you have installed on your Unix.

TUTORIALS POINT
Simply Easy Learning

Command Description

Dbx Sun debugger

Gdb GNU debugger

Make Maintain program groups and compile programs.
Nm Print program's name list

Size Print program's sizes

Strip Remove symbol table and relocation bits
Cb C program beautifier

Cc ANSI C compiler for Suns SPARC systems
Ctrace C program debugger

Gcece GNU ANSI C Compiler

Indent Indent and format C program source

Bc Interactive arithmetic language processor
Gcl GNU Common Lisp

Perl General purpose language

Php Web page embedded language

Py Python language interpreter

Asp Web page embedded language

CcC C++ compiler for Suns SPARC systems
g++ GNU C++ Compiler

Javac JAVA compiler

appletvieweir JAVA applet viewer

netbeans Java integrated development environment on Linux
Sqlplus Run the Oracle SQL interpreter

Sqlldr Run the Oracle SQL data loader

Mysql Run the mysql SQL interpreter

TUTORIALS POINT
Simply Easy Learning

aiao

| 2YYIl yRAY

These commands list or alter information about the system:

Command
Chfn
Chgrp
Chown
Date
determin
Du

Echo
Exit
Finger
groupadd
Groups
homequota
lostat

Kill

Last
Logout
Lun
Netstat
Passwd
Passwd
printenv
Ps

Ps

quota -v

Description

Change your finger information
Change the group ownership of a file
Change owner

Print the date

Automatically find terminal type

Print amount of disk usage

Echo arguments to the standard options
Quit the system

Print information about logged-in users
Create a user group

Show group memberships

Show quota and file usage

Report I/O statistics

Send a signal to a process

Show last logins of users

log off UNIX

List user names or login 1D

Show network status

Change user password

Change your login password

Display value of a shell variable
Display the status of current processes
Print process status statistics

Display disk usage and limits

TUTORIALS POINT
Simply Easy Learning

Reset Reset terminal mode

Script Keep script of terminal session

Script Save the output of a command or process
Setenv Set environment variables

Sty Set terminal options

Time Time a command

Top Display all system processes

Tset Set terminal mode

Tty Print current terminal name

Umask Show the permissions that are given to view files by default
Uname Display name of the current system
Uptime Get the system up time

useradd Create a user account

Users Print names of logged in users

Vmstat Report virtual memory statistics

W Show what logged in users are doing
Who List logged in users

TUTORIALS POINT
Simply Easy Learning

Unix o Builtin Functions

he most of the part of this tutorial covered Bourne Shell but this page list down all the mathematical builti-

in functions available in Korn Shell.

The Korn shell provides access to the standard set of mathematical functions. They are called using C function

call syntax.
Function
Abs

Log
Acos
Sin

Asin
Sinh
Cos

Sqrt
Cosh
Tan

Exp
Tanh

Int

Description
Absolute value
Natural logarithm
Arc cosine

Sine

Arc sine
Hyperbolic sine
Cosine

Square root
Hyperbolic cosine
Tangent
Exponential function
Hyperbolic tangent

Integer part of floating-point number

TUTORIALS POINT

Simply Easy Learning

	Unix Tutorial
	Audience
	Prerequisites
	Copyright & Disclaimer Notice
	Unix Getting Started
	What is Unix ?
	Unix Architecture:
	System Bootup:
	Login Unix:
	To log in:
	Change Password:
	Listing Directories and Files:
	Who Are You?
	Who is Logged In?
	Logging Out:
	To log out:
	System Shutdown:

	Unix File Management
	Listing Files:
	Meta Characters:
	Hidden Files:
	Creating Files:
	Editing Files:
	Display Content of a File:
	Counting Words in a File:
	Copying Files:
	Renaming Files:
	Deleting Files:
	Standard Unix Streams:

	Unix Directories
	Home Directory:
	Absolute/Relative Pathnames:
	Listing Directories:
	Creating Directories:
	Creating Parent Directories:
	Removing Directories:
	Changing Directories:
	Renaming Directories:
	The directories . (dot) and .. (dot dot)

	Unix File Permission Setup
	The Permission Indicators:
	File Access Modes:
	1. Read:
	2. Write:
	3. Execute:
	Directory Access Modes:
	1. Read:
	2. Write:
	3. Execute:
	Changing Permissions:
	Using chmod in Symbolic Mode:
	Using chmod with Absolute Permissions:
	Changing Owners and Groups:
	Changing Ownership:
	Changing Group Ownership:
	SUID and SGID File Permission:

	Unix Environment
	The .profile File:
	Setting the Terminal Type:
	Setting the PATH:
	PS1 and PS2 Variables:
	Environment Variables:

	Java Basic Utilities
	Printing Files:
	The pr Command:
	The lp and lpr Commands:
	The lpstat and lpq Commands:
	The cancel and lprm Commands:
	Sending Email:

	Unix Pipes and Filters
	The grep Command:
	The sort Command:
	The pg and more Commands:

	Unix Processes Management
	Starting a Process:
	Foreground Processes:
	Background Processes:
	Listing Running Processes:
	Stopping Processes:
	Parent and Child Processes:
	Zombie and Orphan Processes:
	Daemon Processes:
	The top Command:
	Job ID Versus Process ID:

	Unix Communication
	The ping Utility:
	Syntax:
	Example:
	The ftp Utility:
	Syntax:
	Example:
	The telnet Utility:
	The finger Utility:

	Unix – The vi Editor
	Starting the vi Editor:
	Operation Modes:
	Getting Out of vi:
	Moving within a File:
	Control Commands:
	Editing Files:
	Deleting Characters:
	Change Commands:
	Copy and Past Commands:
	Advanced Commands:
	Word and Character Searching:
	Set Commands:
	Running Commands:
	Replacing Text:
	IMPORTANT:

	Unix- What is Shell
	Shell Prompt:
	Shell Types:
	Shell Scripts:
	Example Script:
	Shell Comments:
	Extended Shell Scripts:

	Unix- Using Variables
	Variable Names:
	Defining Variables:
	Accessing Values:
	Read-only Variables:
	Unsetting Variables:
	Variable Types:

	Unix-Special Variables
	Command-Line Arguments:
	Special Parameters $* and $@:
	Exit Status:

	Unix – Using Arrays
	Defining Array Values:
	Accessing Array Values:

	Unix - Basic Operators
	Arithmetic Operators:
	Relational Operators:
	Boolean Operators:
	Example:
	String Operators:
	Example:
	File Test Operators:
	Example:
	C Shell Operators:
	Arithmetic and Logical Operators:
	File Test Operators:
	Korn Shell Operators:
	Arithmetic and Logical Operators:
	File Test Operators:

	Unix – Decision Making
	The if...else statements:
	if...fi statement
	Syntax:
	Example:
	if...else...fi statement
	Syntax:
	Example:
	if...elif...else...fi statement
	Syntax:
	Example:
	The case...esac Statement:
	case...esac statement
	Syntax:
	Example:

	Unix – Shell Loops
	The while loop
	Syntax:
	Example:
	The for loop
	Syntax:
	Example:
	The until loop
	Syntax:
	Example:
	The select loop
	Syntax:
	Example:
	Nesting Loops:
	Nesting while Loops:
	Syntax:
	Example:

	Unix – Loop Control
	The infinite Loop:
	Example:
	The break statement:
	Syntax:
	Example:
	The continue statement:
	Syntax:
	Example:

	Unix – Shell Substitutions
	What is Substitution?
	Example:
	Command Substitution:
	Syntax:
	Example:
	Variable Substitution:
	Example:

	Unix – Quoting Mechanisms
	The Metacharacters
	Example:
	The Single Quotes:
	The Double Quotes:
	The Back Quotes:
	Syntax:
	Example:
	Example:

	Unix – IO Redirections
	Output Redirection:
	Input Redirection:
	Here Document:
	Discard the output:
	Redirection Commands:

	Unix – Shell Functions
	Creating Functions:
	Example:
	Pass Parameters to a Function:
	Returning Values from Functions:
	Example:
	Nested Functions:
	Function Call from Prompt:

	Unix - Manpage Help
	Syntax:
	Example:
	Man Page Sections:
	Useful Shell Commands:

	Unix - Regular Expressions
	Invoking sed:
	The sed General Syntax:
	Deleting All Lines with sed:
	The sed Addresses:
	The sed Address Ranges:
	The Substitution Command:
	Substitution Flags:
	Using an Alternative String Separator:
	Replacing with Empty Space:
	Address Substitution:
	The Matching Command:
	Using Regular Expression:
	Matching Characters:
	Character Class Keywords:
	Aampersand Referencing:
	Using Multiple sed Commands:
	Back References:

	Unix – File System Basics
	Directory Structure:
	Navigating the File System:
	The df Command:
	The du Command:
	Mounting the File System:
	Unmounting the File System:
	User and Group Quotas:

	Unix – User Administration
	Managing Users and Groups:
	Create a Group
	Modify a Group:
	Delete a Group:
	Create an Account
	Modify an Account:
	Delete an Account:

	Unix – System Performance
	Performance Components:
	Performance Tools:

	Unix – System Logging
	Syslog Facilities:
	Syslog Priorities:
	The /etc/syslog.conf file:
	Logging Actions:
	The logger Command:
	Log Rotation:
	Important Log Locations

	Unix – Signals and Traps
	List of Signals:
	Default Actions:
	Sending Signals:
	Trapping Signals:
	Cleaning Up Temporary Files:
	Ignoring Signals:
	Resetting Traps:

	Unix – Useful Commands
	Files and Directories:
	Manipulating data:
	Compressed Files:
	Getting Information:
	Network Communication:
	Messages between Users:
	Programming Utilities:
	Misc Commands:

	Unix – Builtin Functions

